题目大意:给你一个网络要求这里面的桥。
输入数据:
n 个点
点的编号  (与这个点相连的点的个数m)  依次是m个点的
 
输入到文件结束。
桥输出的时候需要排序
 
知识汇总:
桥:   无向连通图中,如果删除某条边后,图变成不连通了,则该边为桥。
求桥:
在求割点的基础上吗,假如一个边没有重边(重边 1-2, 1->2 有两次,那么 1->2 就是有两条边了,那么 1->2就不算是桥了)。
当且仅当 (u,v) 为父子边,且满足 dfn[u] < low[v]
这里对重边处理的时候用了两种方法。写了两个代码,也挺简单的。
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <algorithm>
#include <vector>
#include <queue>
#include <cmath>
#include <stack>
#include <cstring>
using namespace std;
#define INF 0xfffffff
#define maxn 11005
#define min(a,b) (a<b?a:b)
struct node
{
int x, y;
bool friend operator < (node A,node B)
{
if(A.x == B.x)
return A.y < B.y;
return A.x < B.x;
}
}bridge[maxn];
int n, dfn[maxn], low[maxn], Father[maxn], Time;
vector<int> G[maxn]; void init()
{
memset(dfn, , sizeof(dfn));
memset(low, , sizeof(low));
memset(Father, , sizeof(Father));
Time = ;
for(int i=; i<n; i++)
G[i].clear();
} void Tarjan(int u,int fa)
{
Father[u] = fa;
low[u] = dfn[u] = ++Time;
int len = G[u].size(), v, k = ; for(int i=; i<len; i++)
{
v = G[u][i]; if(v == fa && !k)
{
k ++;
continue;
}
if( !low[v] )
{
Tarjan(v, u);
low[u] = min(low[u], low[v]);
}
else
low[u] = min(low[u], dfn[v]);
}
} void solve()
{
int ans = ;
for(int i=; i<n; i++)
{
if(!dfn[i])
Tarjan(i,-);
} for(int i=; i<n; i++)
{
int v = Father[i];
if(dfn[v] < low[i] && v != -)
{ bridge[ans].x = i;
bridge[ans].y = v; if(bridge[ans].x > bridge[ans].y)
swap(bridge[ans].x, bridge[ans].y);
ans ++;
}
}
sort(bridge, bridge + ans); printf("%d critical links\n", ans); for(int i=; i<ans; i++)
{
printf("%d - %d\n",bridge[i].x,bridge[i].y);
}
printf("\n");
} int main()
{
while(scanf("%d",&n) != EOF)
{
init();
for(int i=; i<n; i++)
{
int a, b, m;
scanf("%d (%d)",&a,&m); while(m--)
{
scanf("%d", &b);
G[a].push_back(b);
// G[b].push_back(a);
}
}
solve();
}
return ;
} /**
8
0 (1) 1
1 (3) 2 0 3
2 (2) 1 3
3 (3) 1 2 4
4 (1) 3
7 (1) 6
6 (1) 7
5 (0)
*/ #include <iostream>
#include <cstdlib>
#include <cstdio>
#include <algorithm>
#include <vector>
#include <queue>
#include <cmath>
#include <stack>
#include <cstring>
usingnamespace std;
#define INF 0xfffffff
#define maxn 11005
#define min(a,b) (a<b?a:b)
/** 无向图求桥 **/struct node
{
int x, y;
bool friend operator < (node A,node B)
{
if(A.x == B.x)
return A.y < B.y;
return A.x < B.x;
}
}bridge[maxn];
int n, dfn[maxn], low[maxn], Father[maxn], Time;
vector<int> G[maxn]; void init()
{
memset(dfn, , sizeof(dfn));
memset(low, , sizeof(low));
memset(Father, , sizeof(Father));
Time = ;
for(int i=; i<n; i++)
G[i].clear();
} void Tarjan(int u,int fa)
{
Father[u] = fa;
low[u] = dfn[u] = ++Time;
int len = G[u].size(), v; for(int i=; i<len; i++)
{
v = G[u][i]; if( !low[v] )
{
Tarjan(v, u);
low[u] = min(low[u], low[v]);
}
elseif(fa != v)
low[u] = min(low[u], dfn[v]);
}
} void solve()
{
int ans = ;
for(int i=; i<n; i++)
{
if(!low[i])
Tarjan(i, -);
} for(int i=; i<n; i++)
{
int v = Father[i];
if(v != - && dfn[v] < low[i])
{ bridge[ans].x = i;
bridge[ans].y = v; if(bridge[ans].x > bridge[ans].y)
swap(bridge[ans].x, bridge[ans].y);
ans ++;
}
}
sort(bridge, bridge + ans); printf("%d critical links\n", ans); for(int i=; i<ans; i++)
{
printf("%d - %d\n",bridge[i].x,bridge[i].y);
}
printf("\n");
} int main()
{
while(scanf("%d",&n) != EOF)
{
init();
for(int i=; i<n; i++)
{
int a, b, m;
scanf("%d (%d)",&a,&m); while(m--)
{
scanf("%d", &b);
G[a].push_back(b);
G[b].push_back(a);
}
}
solve();
}
return0;
}

UVA 796 Critical Links(无向图求桥)的更多相关文章

  1. UVA 796 - Critical Links (求桥)

    Critical Links  In a computer network a link L, which interconnects two servers, is considered criti ...

  2. UVA 796 - Critical Links 无向图字典序输出桥

    题目:传送门 题意:给你一个无向图,你需要找出里面的桥,并把所有桥按字典序输出 这一道题就是用无向图求桥的模板就可以了. 我一直错就是因为我在输入路径的时候少考虑一点 错误代码+原因: 1 #incl ...

  3. UVA 796 Critical Links —— (求割边(桥))

    和求割点类似,只要把>=改成>即可.这里想解释一下的是,无向图没有重边,怎么可以使得low[v]=dfn[u]呢?只要它们之间再来一个点即可. 总感觉图论要很仔细地想啊- -一不小心就弄混 ...

  4. Uva 796 Critical Links (割边+排序)

    题目链接: Uva 796 Critical Links 题目描述: 题目中给出一个有可能不连通的无向图,求出这个图的桥,并且把桥按照起点升序输出(还有啊,还有啊,每个桥的起点要比终点靠前啊),这个题 ...

  5. UVA 796 Critical Links(模板题)(无向图求桥)

    <题目链接> 题目大意: 无向连通图求桥,并将桥按顺序输出. 解题分析: 无向图求桥的模板题,下面用了kuangbin的模板. #include <cstdio> #inclu ...

  6. uva 796 Critical Links(无向图求桥)

    https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  7. UVA 796 Critical Links(Tarjan求桥)

    题目是PDF就没截图了 这题似乎没有重边,若有重边的话这两点任意一条边都不是桥,跟求割点类似的原理 代码: #include <stdio.h> #include <bits/std ...

  8. Uva 796 Critical Links 找桥

    这个题很简单,但是输入有毒,用字符串的我一直RE 然后换成这样瞬间AC #include <stdio.h> #include <string.h> #include < ...

  9. UVA 796 Critical Links (tarjan算法求割边)

    这是在kuangbin的题目里看到的,不得不吐槽一下,题目中居然没给出数据范围,还是我自己猜的-本来是一道挺裸的题,但是我wa了好多次,原因就是这里面有两个坑点,1重边特判,2输出时左边必须比右边小. ...

随机推荐

  1. git 指令汇总

    学习git过程中整理的笔记: git add 添加文件到暂存区: git commit -m "更改说明" 提交文件更改: git status 查看当前文件状态: git dif ...

  2. jQuery失去焦点的时候注册验证

    //注册验证$('form :input').blur(function () { if ($("#txtName").val() == "") { $(&qu ...

  3. U3D 内置对象

    在U3D里面提供了一个Time对象: void OnGUI(){ Debug.Log("########################"); GUILayout.Label (& ...

  4. Hessian(C#)介绍及使用说明

    什么是Hessian? Hessian是Caucho开发的一种二进制Web Service协议.支持目前所有流行的开发平台. Hessia能干什么? hessian用来实现web服务. Hessia有 ...

  5. iOS GCD多线程介绍

    GCD:是纯C语言写的,是苹果公司为多核的并行运算提出的解决方案. GCD的两个核心概念: - 任务 - 队列 将任务添加到队列中 GCD会自动将队列中的任务取出,放到对应的线程中执行 任务的取出遵循 ...

  6. 基于ProGuard-Maven-Plugin的自定义代码混淆插件

    介绍 大家可能都会碰到一些代码比较敏感的项目场景,这个时候代码被反编译看到就不好了,这个时候就需要代码混淆插件来对代码进行混淆了. 基于Maven的项目一般会去考虑使用proguard-maven-p ...

  7. 最优雅的C++跟lua交互.

    我先来吐槽一下我们这个项目. 我是做手机游戏的, cocos2dx引擎, lua编码. 这本来是一件很欢快的事情, 因为不用接触C++. C++写久了的人写lua, 就会感觉任督二脉被打通了, 代码写 ...

  8. Flume研究心得

    最近两天,仔细的看了一下Flume中央日志系统(版本号:1.3.X),Flume在本人看来,还是一个非常不错的日志收集系统的,其设计理念非常易用,简洁.并且是一个开源项目,基于Java语言开发,可以进 ...

  9. iOS 数据持久性存储-属性列表

    iOS上常用四种数据存取方法有: 1.属性列表 2.对象归档 3.iOS的嵌入式关系数据库(SQLite3) 4.苹果公司提供持久性共聚Core Data 由于苹果公司的沙盒机制,每个应用程序都有自己 ...

  10. PHP常用代码段:

    1.PHP加密解密   function encryptDecrypt($key, $string, $decrypt){      if($decrypt){          $decrypted ...