F - 概率(经典问题)

Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu

Submit Status

Description

Sometimes some mathematical results are hard to believe. One of the common problems is the birthday paradox. Suppose you are in a party where there are 23 people including you. What is the probability that at least two people in the party have same birthday? Surprisingly the result is more than 0.5. Now here you have to do the opposite. You have given the number of days in a year. Remember that you can be in a different planet, for example, in Mars, a year is 669 days long. You have to find the minimum number of people you have to invite in a party such that the probability of at least two people in the party have same birthday is at least 0.5.

Input

Input starts with an integer T (≤ 20000), denoting the number of test cases.

Each case contains an integer n (1 ≤ n ≤ 105) in a single line, denoting the number of days in a year in the planet.

Output

For each case, print the case number and the desired result.

Sample Input

2

365

669

Sample Output

Case 1: 22

Case 2: 30

解题思路:

n≤365,根据鸽巢原理,n大于365时概率为1。

鸽巢原理:又称抽屉原理,或狄利克雷原理,被用来证明一些关于存在性的数学问题,并且在数论和密码学中也有广泛的应用

这里题目的意思是在N天中,两人在同一天生日的概率不超过0.5的概率,这样的人会来多少人才能满足

  理解生日悖论的关键在于领会相同生日的搭配可以是相当多的。如在前面所提到的例子,23个人可以产生种不同的搭配,而这每一种搭配都有成功相等的可能。从这样的角度看,在253种搭配中产生一对成功的配对也并不是那样的不可思议。

  换一个角度,如果你进入了一个有着22个人的房间,房间里的人中会和你有相同生日的概率便不是50:50了,而是变得非常低。原因是这时候只能产生22种不同的搭配。

程序代码:

#include <cstdio>
using namespace std;
const int L=;
double d[L];
int n;
int main()
{
int t,Case=;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
int ans=;
double p=,pz=1.0;
while(p<0.5)
{
pz=pz*(-ans*1.0/n);
p=-pz;
ans++;
}
printf("Case %d: %d\n",++Case,ans-);
}
return ;
}

数学概念——F 概率(经典问题)birthday paradox的更多相关文章

  1. Math concepts / 数学概念

    链接网址:Math concepts / 数学概念 – https://www.codelast.com/math-concepts-%e6%95%b0%e5%ad%a6%e6%a6%82%e5%bf ...

  2. 21副GIF动图让你了解各种数学概念

    baidu 21副GIF动图让你了解各种数学概念

  3. 转:21副GIF动图让你了解各种数学概念

    21副GIF动图让你了解各种数学概念

  4. 集训第六周 数学概念与方法 概率 F题

    Submit Status Description Sometimes some mathematical results are hard to believe. One of the common ...

  5. F - 概率(经典问题)

    Description Sometimes some mathematical results are hard to believe. One of the common problems is t ...

  6. 动态规划之经典数学期望和概率DP

    起因:在一场训练赛上.有这么一题没做出来. 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6829 题目大意:有三个人,他们分别有\(X,Y,Z\)块钱 ...

  7. 数学概念——E 期望(经典问题)

    E - 期望(经典问题) Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu Submit S ...

  8. 集训第六周 数学概念与方法 概率 N题

    N - 概率 Time Limit:4000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu Submit Status ...

  9. 集训第六周 数学概念与方法 概率 数论 最大公约数 G题

    Description There is a hill with n holes around. The holes are signed from 0 to n-1. A rabbit must h ...

随机推荐

  1. linux工具问题,tail -f 失效

    最近发现一个很奇怪问题: tail -f 不能实时的输出日志

  2. ASP+MYSQL的配置及乱码解决

    TempStr = "driver={MySQL ODBC 3.51 Driver};database="&strDB&";server="&a ...

  3. dnsever 邮件记录

    记录,备忘

  4. fish code

    <embed width="272" height="180" type="application/x-shockwave-flash" ...

  5. php学习小技巧

    1.print_r可打印数组 <?php echo '<p class="ajax">This paragraph was loaded with AJAX.&l ...

  6. Linux内存点滴:用户进程内存空间

    原文出处:PerfGeeks 经常使用top命令了解进程信息,其中包括内存方面的信息.命令top帮助文档是这么解释各个字段的.VIRT , Virtual Image (kb)RES, Residen ...

  7. 关于css float 属性以及position:absolute 的区别。

    1.float 属性定义元素在哪个方向浮动.以往这个属性总应用于图像,使文本围绕在图像周围,不过在 CSS 中,任何元素都可以浮动.浮动元素会生成一个块级框,而不论它本身是何种元素.div一个典型的块 ...

  8. 1s延时程序

    #include <reg52.h>sbit P1_0 = P1^0;void Delay(); // 下面引用时一定要和这里的大小写一致否则会有警告或错误 void Main(){whi ...

  9. bzoj1855: [Scoi2010]股票交易

    Description 最近lxhgww又迷上了投资股票,通过一段时间的观察和学习,他总结出了股票行情的一些规律. 通过一段时间的观察,lxhgww预测到了未来T天内某只股票的走势,第i天的股票买入价 ...

  10. 误差逆传播(error BackPropagation, BP)算法推导及向量化表示

    1.前言 看完讲卷积神经网络基础讲得非常好的cs231后总感觉不过瘾,主要原因在于虽然知道了卷积神经网络的计算过程和基本结构,但还是无法透彻理解卷积神经网络的学习过程.于是找来了进阶的教材Notes ...