题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=21363

【思路】

欧拉定理:V+F-E=2。则F=E-V+2。

其中V E F分别代表平面图的顶点数,边数和面数。

涉及到判断线段是否有交点,直线求交点以及判断点是否在直线上的函数。注意求直线交点之前需要判断是否有交点,交点还需要去重。

【代码】

 #include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define FOR(a,b,c) for(int a=(b);a<(c);a++)
using namespace std; const double eps = 1e-;
int dcmp(double x) {
if(fabs(x)<eps) return ; else return x<? -:;
} struct Pt {
double x,y;
Pt(double x=,double y=):x(x),y(y) {};
};
typedef Pt vec; vec operator - (Pt A,Pt B) { return vec(A.x-B.x,A.y-B.y); }
vec operator + (vec A,vec B) { return vec(A.x+B.x,A.y+B.y); }
vec operator * (vec A,double p) { return vec(A.x*p,A.y*p); }
double Dot(vec A,vec B) { return A.x*B.x+A.y*B.y; }
double cross(vec A,vec B) { return A.x*B.y-A.y*B.x; }
bool operator < (const Pt& a,const Pt& b) {
return a.x<b.x || (a.x==b.x && a.y<b.y);
}
bool operator == (const Pt& a,const Pt& b) { // for unique
return dcmp(a.x-b.x)== && dcmp(a.y-b.y)==;
} Pt LineIntersection(Pt P,vec v,Pt Q,vec w) {
vec u=P-Q;
double t=cross(w,u)/cross(v,w);
return P+v*t;
}
bool SegIntersection(Pt a1,Pt a2,Pt b1,Pt b2) {
double c1=cross(a2-a1,b1-a1) , c2=cross(a2-a1,b2-a1) ,
c3=cross(b2-b1,a1-b1) , c4=cross(b2-b1,a2-b1);
return dcmp(c1)*dcmp(c2)< && dcmp(c3)*dcmp(c4)<;
// b1 b2在线段a1a2的两侧 a1 a2在线段b1b2的两侧 => 规范相交
}
bool OnSeg(Pt P,Pt a1,Pt a2) {
return dcmp(cross(a1-P,a2-P))== && dcmp(Dot(a1-P,a2-P))<;
} const int N = +;
Pt P[N],V[N*N];
int n; int main() {
int kase=;
while(scanf("%d",&n)== && n) {
FOR(i,,n)
scanf("%lf%lf",&P[i].x,&P[i].y) , V[i]=P[i];
n--;
int c=n,e=n;
FOR(i,,n) FOR(j,i+,n)
if(SegIntersection(P[i],P[i+],P[j],P[j+]))
V[c++]=LineIntersection(P[i],P[i+]-P[i],P[j],P[j+]-P[j]);
sort(V,V+c);
c=unique(V,V+c)-V;
FOR(i,,c) FOR(j,,n)
if(OnSeg(V[i],P[j],P[j+])) e++;
printf("Case %d: There are %d pieces.\n",++kase,e+-c);
}
return ;
}

UVAlive 3263 That Nice Euler Circuit(欧拉定理)的更多相关文章

  1. UVALive - 3263 That Nice Euler Circuit (几何)

    UVALive - 3263 That Nice Euler Circuit (几何) ACM 题目地址:  UVALive - 3263 That Nice Euler Circuit 题意:  给 ...

  2. LA 3263 That Nice Euler Circuit(欧拉定理)

    That Nice Euler Circuit Little Joey invented a scrabble machine that he called Euler, after the grea ...

  3. uvalive 3263 That Nice Euler Circuit

    题意:平面上有一个包含n个端点的一笔画,第n个端点总是和第一个端点重合,因此团史一条闭合曲线.组成一笔画的线段可以相交,但是不会部分重叠.求这些线段将平面分成多少部分(包括封闭区域和无限大区域). 分 ...

  4. UVALive 3263: That Nice Euler Circuit (计算几何)

    题目链接 lrj训练指南 P260 //==================================================================== // 此题只需要考虑线 ...

  5. UVALi 3263 That Nice Euler Circuit(几何)

    That Nice Euler Circuit [题目链接]That Nice Euler Circuit [题目类型]几何 &题解: 蓝书P260 要用欧拉定理:V+F=E+2 V是顶点数; ...

  6. 简单几何(求划分区域) LA 3263 That Nice Euler Circuit

    题目传送门 题意:一笔画,问该图形将平面分成多少个区域 分析:训练指南P260,欧拉定理:平面图定点数V,边数E,面数F,则V + F - E =  2.那么找出新增的点和边就可以了.用到了判断线段相 ...

  7. hdu 1665 That Nice Euler Circuit(欧拉定理)

    输入n个点,然后从第一个点开始,依次链接点i->点i+1,最后回到第一点(输入中的点n),求得到的图形将平面分成了多少部分. 根据欧拉定理 v_num + f_num - e_num = 2可知 ...

  8. poj2284 That Nice Euler Circuit(欧拉公式)

    题目链接:poj2284 That Nice Euler Circuit 欧拉公式:如果G是一个阶为n,边数为m且含有r个区域的连通平面图,则有恒等式:n-m+r=2. 欧拉公式的推广: 对于具有k( ...

  9. POJ2284 That Nice Euler Circuit (欧拉公式)(计算几何 线段相交问题)

                                                          That Nice Euler Circuit Time Limit: 3000MS   M ...

随机推荐

  1. Js 的常用方法:页面跳转,Session,类继承

    MyApp.Base = function () { } var basePrototype = MyApp.Base["prototype"]; //对象克隆方法 basePro ...

  2. 第一节 WCF概述

    主要内容: 1.什么是WCF? 2.WCF的背景介绍. 引例:(WCF用来解决什么事情) 一家汽车租赁公司决定创建一个新的应用程序,用于汽车预定 • 该租车预定应用程序的创建者知道,应用程序所实现的业 ...

  3. Could not parse mapping document from resource cn/spt/model/Student.hbm.xml

    初始hibernate, 写第一个程序 helloworld的错误: Exception in thread "main" org.hibernate.InvalidMapping ...

  4. C#管理异常和错误

    C#管理异常和错误 1.try/catch捕捉异常的语句块,其中try{}中是写可能会出错的程序代码,catch{}中是抛出异常的代码:一个try后可以有多个catch. 2.异常采用继承层次结构进行 ...

  5. jquery 过滤器

    1.基本选择器 基本选择器是JQuery中最常用的选择器,也是最简单的选择器,它通过元素id.class 和标签名来查找DOM元素.这个非常重要,下面的内容都是以此为基础,逐级提高的. 1).“$(“ ...

  6. MVVM模式应用 之在ViewModel中使用NavigationService

    在ViewModel.cs页面中是不能使用NavigationService,那该怎么实现跳转呢? 其实在ViewModel中实现页面的跳转也很简单,下面的代码: using Microsoft.Ph ...

  7. 【实习记】2014-08-22试用SSH客户端XShell与SecuretyCRT与MobaXterm总结

        虚拟机下来了,是32位8G内存双核的win7系统. 测试显示实习生可以用办公机登录虚拟机在ssh到linux编译机.办公机虽ping通但不可以ssh上去. 只说这么多. 用惯linux下的sh ...

  8. 无线端web开发学习总结

    无线web开发之前要做一些准备工作:一.必需的reset样式库1.其中的重点是盒模型box-sizing:由原来pc端的content-box改为border-box. *, *:before, *: ...

  9. 用linux的shell脚本把目录下面的所有文件的文件内容中的小写字母改成大写字母

    最近工作中,产品组的同事给出的数据里面都是小写字母 ,但是引擎组的同事要求他们拿到的从数据里面解析出的结构体里面存储的要都是大写结构,这让我们数据预处理组很尴尬啊,,所以在写了个这么样的脚本,在解析数 ...

  10. 虚拟机下linux上网

    一.概述 1. 常见的上网方式 有以下两种: 桥接 NAT(推荐) 有关虚拟机几种不同联网方式的讲述,可以参考VMware网络选项分析 通常的配置步骤: <1> 配置PC端 <2&g ...