Back to Basics: Using KVO
One of the things I like most about Apple’s iOS SDK is the consistent and easy-to-use API they provide. Across all their different frameworks there’s a pattern at work that makes using their classes easy to understand. This is due in part to the simplicity for configuring those objects. In most cases you don’t need to call cryptic methods to setup or teardown classes. If you want to change a label’s font, you just set a property. If you want to add a new set of tabs to a UITabBarController, you simply have to assign an array of view controllers to the “viewControllers” property and away you go.
This up front simplicity comes at a cost however: somebody had to write code to intercept the setting of those properties and update the view to reflect the changes made. Fortunately for those developers at Apple, Cocoa and Cocoa Touch makes this simple through the use of Key-Value-Observing (KVO). If you know how to use it, you can do the same thing in your applications as well. Read on to see what I do to make implementing KVO in my projects easy and intuitive.
What is Key-Value-Observing?
Key-Value-Observing, or more commonly KVO, is a mechanism by which you can observe changes to keys and their values bound to an object. It lets you make arbitrary objects aware of changes made to values in other objects that are important to you. When those values are changed at all, theobserveValueForKeyPath:ofObject:change:context: method is invoked on the listener, or “observer”. In essence, it lets you listen to when people change properties on your object.
You might say “Really? That’s all it does? I can get the same by creating a custom setter!” and you might be right, but there’s several reasons why creating custom setters to handle update logic might be undesirable:
- It’s easy to create one or two custom setters, but quite tedious if you have lots of properties you want to observe.
- Custom setters only work if you are monitoring properties under your control, but impossible if you want to monitor changes made to other objects you encapsulate.
- You have to implement your own retain/release/copy cycles manually, instead of simply using@synthesize.
- You have to manually keep track of what the old and new values of a property, if they’re important to you.
- Your code looks like dog food.
Using KVO in a class essentially buys you flexibility and easy-to-read code, and with a few general practices can be made easy to read and easy to extend.
Setting up KVO the hard way
Many developers getting started with KVO, myself included, typically start by assigning observers for one or two keyPath properties in either their init or viewDidLoad methods. Then, within theirobserveValueForKeyPath:ofObject:change:context: method they will have code to respond to those setting changes.
As an example lets assume we’re creating a UIView subclass that has a UIColor property that controls the display of several subviews.
Objective-C
1
|
@property (nonatomic, copy) UIColor *color;
|
When that property changes lets make our view update all our sub-views to the appropriate color. We could do this with a custom setter, like so:
Objective-C
1
2
3
4
5
6
7
8
9
10
11
|
- (void)setColor:(UIColor *)color {
if (color != color) {
[color release];
color = [color retain];
mTitleLabel.textColor = color;
mDescriptionLabel.textColor = color;
[mButton setTitleColor:color
forState:UIControlStateNormal];
}
}
|
For the purposes of this example though, lets utilize KVO for this.
Objective-C
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
|
- (id)initWithFrame:(CGRect)frame {
self = [super initWithFrame:frame];
if (self) {
[self addObserver:self
forKeyPath:@"color"
options:0
context:nil];
}
}
- (void)observeValueForKeyPath:(NSString*)keyPath
ofObject:(id)object
change:(NSDictionary*)change
context:(void*)context
{
if ([keyPath isEqualToString:@"color"]) {
mTitleLabel.textColor = self.color;
mDescriptionLabel.textColor = self.color;
[mButton setTitleColor:self.color
forState:UIControlStateNormal];
}
else {
[super observeValueForKeyPath:keyPath
ofObject:object
change:change
context:context];
}
}
|
In the initWithFrame: method we add ourselves as an observer of the keyPath “color”, passing in the default options. We also define a method that Cocoa Touch uses to notify the observer, in this case “self”, when a keyPath has been changed. This method is invoked for different properties that are changed, so you should always pass the message along to “super” if this method is called for a property you didn’t explicitly add as an observer.
While the above code does look longer than the custom setter equivalent, in the long-run this code is much easier to extend over the life of your class, especially as you add more complex behaviors.
Keeping Track of Your Key Paths
As my experience with KVO improved, so did my techniques for managing my observers, responding to keyPath value changes, and generally keeping my code clean. One of the things I found was that it is useful to keep a list of the keyPaths you’re observing so that you can conveniently iterate over them programmatically.
To illustrate my point, consider an example where you expose multiple subviews as properties, and when some values change you would like to perform some sort of redraw operation.
Objective-C
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
|
- (id)initWithFrame:(CGRect)frame {
if (ObservableKeys == nil) {
ObservableKeys = [[NSSet alloc] initWithObjects:
@"titleLabel.font",
@"descriptionLabel.font",
// ...
nil];
}
self = [super initWithFrame:frame];
if (self) {
for (NSString *keyPath in ObservableKeys)
[self addObserver:self
forKeyPath:keyPath
options:0
context:nil];
}
}
- (void)dealloc {
for (NSString *keyPath in ObservableKeys)
[self removeObserver:self
forKeyPath:keyPath];
[super dealloc];
}
- (void)observeValueForKeyPath:(NSString*)keyPath
ofObject:(id)object
change:(NSDictionary*)change
context:(void*)context
{
if ([ObservableKeys containsObject:keyPath]) {
[self redrawView];
}
else {
[super observeValueForKeyPath:keyPath
ofObject:object
change:change
context:context];
}
}
|
As you can see not only would this be impossible to do with custom setters, but we managed to respond to several different property changes using a single block of code.
Additionally, keeping a static NSSet object around with a list of the keys you’re observing is convenient for several reasons:
- It lets you easily add your object as an observer of several keyPaths without having to copy/paste code.
- Your generated code is tighter because you don’t have to worry about inline strings being littered throughout your class.
- If you change the name of a keyPath, it happens in a much more limited area.
There are other advantages, but this is just the tip of the iceberg.
Implementing KVO in a UITableViewCell Subclass
In order to illustrate how to build a more complicated feature using KVO, lets create a UITableViewCell subclass that makes it easy to create a gloss icon in your table cells, just like the iTunes App Store app. If we’re successful we should be able to create a table cell whose icon looks like the screenshot to the right.
Instead of requiring us to worry about the details of rendering the gloss icon overlay every time we want to display an app icon, lets create a property on our table cell that encapsulates this behavior. Ideally we should be able to set the app icon’s original image once, and the UITableViewCell imageView.image property should be set to the appropriate content. We could do this with a custom accessor, but I’d like to show you an easy way to do this with KVO.
Objective-C
1
2
3
4
5
6
7
8
|
#import <UIKit/UIKit.h>
@interface AppStoreItemView : UITableViewCell
@property (nonatomic, retain) UIImage *icon;
@property (nonatomic) BOOL iconNeedsGlossEffect;
@end
|
You can see from our interface declaration that we’re adding two properties for the icon image itself, and a boolean indicating whether or not we want the gloss effect. Now lets look at the implementation.
Objective-C
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
|
#import "AppStoreItemView.h"
#import <QuartzCore/QuartzCore.h>
static NSSet * ObservableKeys = nil;
static NSString * const IconKeyPath = @"icon";
static NSString * const IconNeedsGlossEffectKeyPath
= @"iconNeedsGlossEffect";
@interface AppStoreItemView ()
- (UIImage*)glossImageForImage:(UIImage*)image;
@end
@implementation AppStoreItemView
@synthesize icon;
@synthesize iconNeedsGlossEffect;
- (id)initWithStyle:(UITableViewCellStyle)style
reuseIdentifier:(NSString *)reuseIdentifier
{
// Setup our set of observable keys only once
if (nil == ObservableKeys) {
ObservableKeys = [[NSSet alloc] initWithObjects:
IconKeyPath,
IconNeedsGlossEffectKeyPath,
nil];
}
self = [super initWithStyle:UITableViewCellStyleSubtitle
reuseIdentifier:reuseIdentifier];
if (nil != self) {
// Add observers for each of the keyPaths we care about
for (NSString *keyPath in ObservableKeys)
[self addObserver:self
forKeyPath:keyPath
options:(NSKeyValueObservingOptionOld |
NSKeyValueObservingOptionNew)
context:nil];
self.imageView.layer.cornerRadius = 10.0;
self.imageView.layer.masksToBounds = YES;
}
return self;
}
- (void)dealloc {
// Tidy up and remove all the observers when the view is destroyed
for (NSString *keyPath in ObservableKeys)
[self removeObserver:self
forKeyPath:keyPath
context:nil];
[super dealloc];
}
- (void)observeValueForKeyPath:(NSString *)keyPath
ofObject:(id)object
change:(NSDictionary *)change
context:(void *)context
{
// If the keyPath being changed isn't one we care about,
// pass this up to super and return immediately.
if (![ObservableKeys containsObject:keyPath]) {
[super observeValueForKeyPath:keyPath
ofObject:object
change:change
context:context];
return;
}
// Fetch the old and new objects from the change dictionary
id oldObject = [change objectForKey:NSKeyValueChangeOldKey];
id newObject = [change objectForKey:NSKeyValueChangeNewKey];
// Detect null values, since the changed object references
// are object references.
if ([NSNull null] == (NSNull*)oldObject)
oldObject = nil;
if ([NSNull null] == (NSNull*)newObject)
newObject = nil;
// Update imageView when the icon is changed
if ([IconKeyPath isEqualToString:keyPath]) {
self.imageView.image = [self glossImageForImage:newObject];
}
// If the gloss effect is changed, refresh the gloss image
else if ([IconNeedsGlossEffectKeyPath isEqualToString:keyPath]) {
self.imageView.image = [self glossImageForImage:self.icon];
}
}
- (UIImage*)glossImageForImage:(UIImage*)image {
// Code goes here to create the gloss image
// and return the resulting image. See the
// sample code for the full example.
return mergedImage;
}
@end
|
This code may seem complicated, but in the end it is very straight-forward. I’m also introducing a few additional concepts here that I’d like to call out specifically.
Observing Options
KVO allows you to specify different options for when you’re observing a set of keyPaths. It’s a bit-mask, so you can enable multiple options simultaneously. In this example I’m indicating that I want to be notified of both the old and new values of these properties. When the icon is changed, the change dictionary supplied to our callback tells us both the old and new values of the property.
Using static strings for keyPaths
This is a pattern I use which helps for simplicity of code, as well as a defensive coding mechanism. By declaring static NSString variables for each keyPath you’re observing, it ensures you won’t accidentally type the wrong keyPath somewhere in your code. It also gives you a single place for defining, or changing, the keyPath you’re interested in observing.
Returning early from the observer callback
In this example I’m returning early in the block, when the keyPath is not in my set of “ObservableKeys”. This makes the callback code cleaner since you eliminate one extra nested “if” block, and helps to prevent mistakes.
Detecting null values in the observer callback
I find it useful to extract values from the change dictionary as early as possible, and then cast those values as needed.
Using private methods for observer callback behaviour
If you’re not careful your observer callback can get quite large. It’s powerful to be able to have a single point where complex behaviours and patterns can be established between different properties, but you should make sure it doesn’t become overgrown with logic. It’s better to start out by pushing complex logic into private methods, and simply invoke that from within your callback.
Where to go for help
Apple’s own documentation, as always, is a good source of information but it can tend to be a lot to take in. At this point you should have a basic understanding of how KVO works, and how you can use it in your application. You can also download the sample application created above at Github.
Once you get started, finding answers to your questions becomes simpler when you’ve gotten the hang of KVO. Good luck, and happy coding!
Back to Basics: Using KVO的更多相关文章
- iOS---观察者模式之--->KVO
文章结构如下: Why? (为什么要用KVO) What? (KVO是什么) How? ( KVO怎么用) More (更多细节) 原理 自己实现KVO 在我的上一篇文章浅谈 iOS Notifica ...
- Objective-C之KVC、KVO
1,KVC(键值编码) Key Value Coding 1.1在C#中,可以通过字符串反射来获取对象,从而对对象的属性进行读写,Object-C中有同样的实现,通过字符串(属性名词)对对象的属性进 ...
- OS 如何选择delegate、notification、KVO?
原文链接:http://blog.csdn.net/dqjyong/article/details/7685933 前面分别讲了delegate.notification和KVO的实现原理,以及实际使 ...
- KVC 和 KVO
KVC 键值编码 全称是Key-value coding,翻译成键值编码.它提供了一种使用字符串而不是访问器方法去访问一个对象实例变量的机制. 1.通过key(成员变量的名称)设置 ...
- 11. KVC And KVO
1. KVC And KVO 的认识 KVC/KVO是观察者模式的一种实现 KVC全称是Key-value coding,翻译成键值编码.顾名思义,在某种程度上跟map的关系匪浅.它提供了一种使用 ...
- KVO __ 浅谈
KVO :Key-Value Observing 它提供一种机制,当指定的对象的属性被修改后,则对象就会接受到通知.简单的说就是每次指定的被观察的对象的属性被修改后,KVO就会自动通知相应的观察者了. ...
- iOS开发系列--Objective-C之KVC、KVO
概述 由于ObjC主要基于Smalltalk进行设计,因此它有很多类似于Ruby.Python的动态特性,例如动态类型.动态加载.动态绑定等.今天我们着重介绍ObjC中的键值编码(KVC).键值监听( ...
- delegate、notification、KVO场景差别
delegate: 编译器会给出没有实现代理方法的警告 一对一 使用weak而不是assign,或者vc消失时置为nil 可以传递参数,还可以接收返回值 notification: 编译期无法排错 一 ...
- IOS学习之初识KVO
什么是KVO? KVO(Key-Value Observing)键值观察,是一种通过对对象的某一个属性添加观察者,一旦这个属性值发生变化,就会通知当前观察者的一种机制. 该如何使用? 1.注册,指定被 ...
随机推荐
- Linux字符串函数集
//Linux字符串函数集: 头文件:string.h 函数名: strstr 函数原型:extern char *strstr(char *str1, char *str2); 功能:找出str2字 ...
- Mock和injectMocks的区别
@Mock private ForeCatalogManageServiceImpl foreCatalogManageServiceImpl; 如果是上面的写法,那么 红框方法里面的代码不会执行,这 ...
- Sql Server插入随机数
--处理性别随机select (case when round(rand()*10,0)>5 then '男' else '女' end), --处理时间段范围内随机select dateadd ...
- asp.net中Request.ServerVariables的用法
在asp.net中可以通过HttpRequest.ServerVariables 属性来获取“ Web 服务器变量的集合” HttpRequest.ServerVariables 的用法: HttpR ...
- git针对Android Studio的使用
1.将文件放到项目根目录下 .gitignore 文件内容: *.iml.gradle/local.properties/.idea/workspace.xml/.idea/libraries.DS_ ...
- 计时器(Chronometer)的使用
安卓提供了一个计时器组件:Chronometer,该组件extends TextView,因此都会显示一段文本,但是它显示的时间是从某个起始时间开始过去了多少时间,它只提供了android:forma ...
- 解决 SQLSERVER 2008 无法删除作业
SQLSERVER 2008 中删除作业时遇到无法删除 解决办法: USE [msdb] ) SET @job_name = N'JobName' --注:jobName为维护计划对应的jobName ...
- iOS 格式化输出符号与类型转换
1.iOS 格式化输出符号 %@ 对象 %d, %i 整数 %u 无符号整形 %f 浮点(双字节) %x, %X 二进制整数 %o 八进制整数 %zi ...
- [技术翻译]Guava官方文档Ordering
关于排序 Guava的链式比较器 例子 assertTrue(byLengthOrdering.reverse().isOrdered(list)); 梗概 Ordering是Guava的链式比较器类 ...
- angularJS学习笔记一
AngularJS是为了克服HTML在构建应用上的不足而设计的.HTML是一门很好的为静态文本展示设计的声明式语言,但要构建WEB应用的话它就显得乏力了.所以我做了一些工作(你也可以觉得是小花招)来让 ...