像素点的Hessian矩阵
最近开始学习图像处理相关知识,碰到对像素点求黑塞矩阵查了资料才搞懂。
给定一个图像f(x,y)上的一点(x,y)。其黑塞矩阵如下:
因为导数的公式是
f'(x)=(f(x+dx)-f(x))/dx
在数字图像里,通常用相邻像素的灰度值来计算,它们的距离 dx=1。一阶导数就是相邻像素的灰度值的差
f'(x) = f(x+1)-f(x)
从二维图像来看,沿X方向和Y方向的一阶偏导数分别为
f'x(x,y) = f(x+1,y)-f(x,y)
f'y(x,y) = f(x,y+1)-f(x,y)
把一阶偏导数的计算结果仍然看作是一枚图像的话,可以对它再做X方向或者Y方向的一阶偏导计算Dxx,Dyy,Dxy 中的小写字母就表示的是两次一阶偏导数的计算方向.
比如
Dxx = [f(x+1,y)-f(x,y)] - [f(x,y)-f(x-1,y)]
Dyy = [f(x,y+1)-f(x,y)] - [f(x,y)-f(x,y-1)]
Dxy = [f(x+1,y+1)-f(x,y+1)] - [f(x+1,y)-f(x,y)]
DYX = [f(x+1,y+1)-f(x+1,y)] - [f(x,y+1)-f(x,y)]
像素点的Hessian矩阵的更多相关文章
- Jacobian矩阵和Hessian矩阵
1.Jacobian矩阵 在矩阵论中,Jacobian矩阵是一阶偏导矩阵,其行列式称为Jacobian行列式.假设 函数 $f:R^n \to R^m$, 输入是向量 $x \in R^n$ ,输出为 ...
- Hessian矩阵
http://baike.baidu.com/link?url=o1ts6Eirjn5mHQCZUHGykiI8tDIdtHHOe6IDXagtcvF9ncOfdDOzT8tmFj41_DEsiUCr ...
- Jacobian矩阵、Hessian矩阵和Newton's method
在寻找极大极小值的过程中,有一个经典的算法叫做Newton's method,在学习Newton's method的过程中,会引入两个矩阵,使得理解的难度增大,下面就对这个问题进行描述. 1, Jac ...
- Hessian矩阵【转】
http://blog.sina.com.cn/s/blog_7e1ecaf30100wgfw.html 在数学中,海塞矩阵是一个自变量为向量的实值函数的二阶偏导数组成的方块矩阵,一元函数就是二阶导, ...
- Hessian矩阵与多元函数极值
Hessian矩阵与多元函数极值 海塞矩阵(Hessian Matrix),又译作海森矩阵,是一个多元函数的二阶偏导数构成的方阵.虽然它是一个具有悠久历史的数学成果.可是在机器学习和图像处理(比如SI ...
- Hessian矩阵与牛顿法
Hessian矩阵与牛顿法 牛顿法 主要有两方面的应用: 1. 求方程的根: 2. 求解最优化方法: 一. 为什么要用牛顿法求方程的根? 问题很多,牛顿法 是什么?目前还没有讲清楚,没关系,先直观理解 ...
- 三维重建面试4:Jacobian矩阵和Hessian矩阵
在使用BA平差之前,对每一个观测方程,得到一个代价函数.对多个路标,会产生一个多个代价函数的和的形式,对这个和进行最小二乘法进行求解,使用优化方法.相当于同时对相机位姿和路标进行调整,这就是所谓的BA ...
- 【机器学习】梯度、Hessian矩阵、平面方程的法线以及函数导数的含义
想必单独论及" 梯度.Hessian矩阵.平面方程的法线以及函数导数"等四个基本概念的时候,绝大部分人都能够很容易地谈个一二三,基本没有问题. 其实在应用的时候,这几个概念经常被混 ...
- 梯度、Hessian矩阵、平面方程的法线以及函数导数的含义
本文转载自: Xianling Mao的专栏 =========================================================================== 想 ...
随机推荐
- hibernate用注解配置实体类的映射
一.注解类 1. @Table 声明了该实体bean映射指定的表(table),目录(catalog)和schema名字 2. @Id 声明了该实体bean的标识属性(对应表中的主键). 3. @Co ...
- chrome、firefox、IE中input输入光标位置错位解决方案
以前在项目里碰到过一个问题 input输入框用一个背景图模拟,设置height和line-height一样的高度,使里面的输入文字能够居中, 在FF下出现的情况是:点击input时,输入光标其实上跟i ...
- 构造定律(constructal law)-构造定律作为第二个时间箭头,将和热力学第二定律一道将宇宙推向无序。
优化系统结构,使信息和物质流在结构内的流动更畅通. 构造定律(constructal law) 由Adrian Bejan于1995创立的构造定律(constructal law): For a ...
- MVC 入口
1.在 Global.asax public class MvcApplication : System.Web.HttpApplication { protected void Applicatio ...
- BZOJ 1042: [HAOI2008]硬币购物 容斥原理_背包_好题
Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买s i的价值的东西.请问每次有多少种付款方法. 题解: 十分喜 ...
- 解决AttributeError: 'module' object has no attribute 'main' 安装第三方包报错
1.找到pycharm 目录下的 \helper\packaging_tool.py 文件 2.用新版pycharm 的packaging_tool.py 替换 旧版 同名文件 文件代码如下: imp ...
- 用div布局,页面copyright部分始终居于
<!DOCTYPE HTML><html><head><meta http-equiv="Content-Type" content=&q ...
- 通过js 实现 向页面插入js代码并生效,和页面postMessage通讯
此文章针对已经搭建好jenkins和会使用iconfont图标库而写. 主要目标就是在不通过更改html文件,完成页面交互图标信息,因为美工最多可以上传代码并且自动发布,并不会在Html中加入我 ...
- UVALive-8138 Number Generator 概率dp+优化
题目链接:https://cn.vjudge.net/problem/UVALive-8138 题意 有一个随机数生成器,输出1-n的整数. 现在已经输出了k个数,问再取几个数才能使取出的所有数的个数 ...
- Oracle与Mysql内嵌游标的使用示例
Oracle 游标用For循环比较简单,Mysql也是最近才开始用,感觉稍微麻烦一点,下边直接上代码: ------------------------------------------------ ...