Description

A number of schools are connected to a computer network. Agreements have been developed among those schools: each school maintains a list of schools to which it distributes software (the “receiving schools”). Note that if B is in the distribution list of school
A, then A does not necessarily appear in the list of school B 

You are to write a program that computes the minimal number of schools that must receive a copy of the new software in order for the software to reach all schools in the network according to the agreement (Subtask A). As a further task, we want to ensure that
by sending the copy of new software to an arbitrary school, this software will reach all schools in the network. To achieve this goal we may have to extend the lists of receivers by new members. Compute the minimal number of extensions that have to be made
so that whatever school we send the new software to, it will reach all other schools (Subtask B). One extension means introducing one new member into the list of receivers of one school. 

Input

The first line contains an integer N: the number of schools in the network (2 <= N <= 100). The schools are identified by the first N positive integers. Each of the next N lines describes a list of receivers. The line i+1 contains the identifiers of the receivers
of school i. Each list ends with a 0. An empty list contains a 0 alone in the line.

Output

Your program should write two lines to the standard output. The first line should contain one positive integer: the solution of subtask A. The second line should contain the solution of subtask B.

Sample Input

5
2 4 3 0
4 5 0
0
0
1 0

Sample Output

1
2

图论题目,须要解决这个问题:

1 使用Tarjan算法求子强连通图

2 标识顶点属于哪个子强连通图

3 计算各个子强连通图的零入度数和零出度数

图论中高级内容了,是有点难度的,不细心一点肯定会出错的。

这次本博主认真注解好差点儿每一个语句。希望大家能够follow我的程序。

#include <cstdio>
#include <stack>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std; const int MAX_N = 101;//最大的顶点数
vector<int> graAdj[MAX_N];//vector表示邻接表法
int visNo[MAX_N];//记录深搜各个顶点的訪问顺序标号
int lowLink[MAX_N];//连通图的最低标识号,记录好是否递归到已经訪问过的顶点了。假设是,那么就以最低的顶点訪问顺序标号为,这样能够统一子连通图的标号。 通过推断当前最低连通图的标识号和訪问顺序号是否一致来推断是否找到了一个子强连通图
int dfsNo;//记录深搜总的訪问号
int connectNo;//当前的子强连通图的标号,终于为全部子强连通图的数量
int markNo[MAX_N];//markNo[v]代表顶点v属于子强连通图markNo[v],其值就为子强连通图
int in[MAX_N], out[MAX_N];//分别记录一个子强连通图的入度数和出度数
stack<int> stk;//深搜顶点入栈,找到子强连通图时候出栈,直到当前顶点数,全部点都属于同一个子强连通图 //深搜查找子强连通图,并记录好顶点属于哪个子强连通图
void getStrongConnected(int u)
{
visNo[u] = lowLink[u] = ++dfsNo;//第一次进入当前顶点的时候的初值
int n = (int)graAdj[u].size();
stk.push(u);
for (int i = 0; i < n; i++)//遍历当前顶点的全部连接点
{
int v = graAdj[u][i];
if (!visNo[v])//没有訪问过的时候
{
getStrongConnected(v);//递归
lowLink[u] = min(lowLink[u], lowLink[v]);//记录最低序号
}
//已经訪问过,可是还在栈里面,即还没有记录该顶点属于哪个强连通图
else if (!markNo[v]) lowLink[u] = min(lowLink[u], lowLink[v]);
}
if (visNo[u] == lowLink[u])//当前訪问顺序号等于最低标号,
{//那么就是找到了一个子强连通图
++connectNo;//每次要添加全局的连通标号
int v;
do
{
v = stk.top(); stk.pop();
markNo[v] = connectNo;//顶点对用强连通图号
} while (u != v);
}
} void Tarjan(int n)
{
//前期清零工作
dfsNo = 0, connectNo = 0;
fill(visNo, visNo+n+1, 0);
fill(lowLink, lowLink+n+1, 0);
fill(markNo, markNo+n+1, 0);
while (!stk.empty()) stk.pop(); for (int u = 1; u <= n; u++)
{
//某些顶点或许是分离的。就是图的顶点有不相连的,故此要遍历全部顶点
if (!visNo[u]) getStrongConnected(u);
}
} int main()
{
int N, u, v;
scanf("%d", &N);
for (u = 1; u <= N; u++)
{
scanf("%d", &v);
while (v)//为零表示结束
{
graAdj[u].push_back(v);//使用vector建立一个邻接表
scanf("%d", &v);
}
}
Tarjan(N);//计算子强连通图的个数,并表出各个顶点属于哪个子强连通图 for (u = 1; u <= N; u++)
{//遍历全部顶点,然后遍历顶点的邻接边。相当于遍历全部边
for (int i = 0; i < (int)graAdj[u].size(); i++)
{
int v = graAdj[u][i];
if (markNo[u] != markNo[v])//不是属于同一个子强连通图
{//分别添加该强连通图的入度和出度
out[markNo[u]]++;
in[markNo[v]]++;
}
}
} int zeroIn = 0, zeroOut = 0;
for (int i = 1; i <= connectNo; i++)
{
if (in[i] == 0) zeroIn++;
if (out[i] == 0) zeroOut++;
}
//入度为零则须要放置一个软件拷贝
printf("%d\n", zeroIn);
//变为一个强连通图,分2个情况:1 本身是一个强连通图;2 零入度或出度最大值
printf("%d\n", connectNo == 1? 0 : max(zeroIn, zeroOut)); return 0;
}

POJ 1236 Network of Schools 强连通图的更多相关文章

  1. POJ 1236 Network of Schools(强连通 Tarjan+缩点)

    POJ 1236 Network of Schools(强连通 Tarjan+缩点) ACM 题目地址:POJ 1236 题意:  给定一张有向图,问最少选择几个点能遍历全图,以及最少加入�几条边使得 ...

  2. Poj 1236 Network of Schools (Tarjan)

    题目链接: Poj 1236 Network of Schools 题目描述: 有n个学校,学校之间有一些单向的用来发射无线电的线路,当一个学校得到网络可以通过线路向其他学校传输网络,1:至少分配几个 ...

  3. POJ 1236 Network of Schools(强连通分量)

    POJ 1236 Network of Schools 题目链接 题意:题意本质上就是,给定一个有向图,问两个问题 1.从哪几个顶点出发,能走全全部点 2.最少连几条边,使得图强连通 思路: #inc ...

  4. poj 1236 Network of Schools(连通图入度,出度为0)

    http://poj.org/problem?id=1236 Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Su ...

  5. poj 1236 Network of Schools(又是强连通分量+缩点)

    http://poj.org/problem?id=1236 Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Su ...

  6. [tarjan] poj 1236 Network of Schools

    主题链接: http://poj.org/problem?id=1236 Network of Schools Time Limit: 1000MS   Memory Limit: 10000K To ...

  7. POJ 1236——Network of Schools——————【加边形成强连通图】

    Network of Schools Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u ...

  8. poj 1236 Network of Schools【强连通求孤立强连通分支个数&&最少加多少条边使其成为强连通图】

    Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 13800   Accepted: 55 ...

  9. POJ 1236 Network of Schools(Tarjan缩点)

    Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 16806   Accepted: 66 ...

随机推荐

  1. Head First 设计模式 —— 工厂模式与工厂方法

    1. 实例化对象的方法 制造对象的方法不只 new 操作符一种.且实例化这个动作不应该总是公开地进行,还有初始化常常造成耦合问题.由此提出的工厂模式以进一步封装实例化的活动,且避免对象初始化时的可能产 ...

  2. B1734 [Usaco2005 feb]Aggressive cows 愤怒的牛 二分答案

    水题,20分钟AC,最大值最小,一看就是二分答案... 代码: Description Farmer John has built a <= N <= ,) stalls. The sta ...

  3. linux IPtable防火墙 禁止和开放端口(转)

    linux IPtable防火墙 禁止和开放端口源:http://hi.baidu.com/zplllm/item/f910cb26b621db57c38d5983评: 1.关闭所有的 INPUT F ...

  4. Aspose.Words将Word模板打印出来

    利用Aspose.Words将制作好的模板,输出出来自己所需的文件 /// <summary> /// 打印信息和列表 /// </summary> /// <param ...

  5. 第5章分布式系统模式 Broker(代理程序)

    许多复杂的软件系统运行在多个处理器或分布式计算机上.将软件分布在多台计算机上的原因有多种,例如: 分布式系统可以利用多个 CPU 或一群低成本计算机的计算能力. 某个软件可能仅在特定计算机上可用. 出 ...

  6. js中获取浏览器和屏幕高度

    Javascript: IE中: document.body.clientWidth ==> BODY对象宽度 document.body.clientHeight ==> BODY对象高 ...

  7. [ Tools ] [ MobaXterm ] [ SSH ] [ Linux ] export and import saved session

    How to export MobaXterm sessions to another computer? https://superuser.com/questions/858973/how-to- ...

  8. table中的td内容过长显示为固定长度,多余部分用省略号代替

    如何使td标签中过长的内容只显示为这个td的width的长度,之后的便以省略号代替. 给table中必须设置属性: table-layout: fixed; 然后给 td 设置: white-spac ...

  9. Java并发-J.U.C之AQS

    AQS(Abstract Queue Synchronizer)介绍 [死磕Java并发]—–J.U.C之AQS(一篇就够了) 下面讲解具体的Java并发工具类 1 CountDownLatch 参考 ...

  10. 企业级任务调度框架Quartz(5) Quartz的声明式配置

    前序:     前面我们已经通过编程的方式实现了多个作业任务执行具体操作的演示:但具体到实际的时候,如果我们要在 Job 启动之后改变它的执行时间和频度,则必须去修改源代码重新编译,我们很难去以编程的 ...