BZOJ 1898 构造矩阵+矩阵快速幂
思路:
T的最小公倍数是12
那么12以内暴力 整除12 的部分用矩阵快速幂
//By SiriusRen
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int n,m,st,ed,k,nfish,T,p[5],can[13][55];
struct Matrix{
int a[55][55];
void init(){memset(a,0,sizeof(a));}
void Change(){for(int i=0;i<n;i++)a[i][i]=1;}
friend Matrix operator*(Matrix a,Matrix b){
Matrix c;c.init();
for(int i=0;i<n;i++)
for(int j=0;j<n;j++){
for(int k=0;k<n;k++)
c.a[i][j]+=a.a[i][k]*b.a[k][j];
c.a[i][j]%=10000;
}
return c;
}
friend Matrix operator^(Matrix a,int b){
Matrix c;c.init();c.Change();
for(;b;b>>=1,a=a*a)if(b&1)c=c*a;
return c;
}
}begin[13];
struct Path{int from,to;}path[2555];
int main(){
scanf("%d%d%d%d%d",&n,&m,&st,&ed,&k);
for(int i=1;i<=m;i++)scanf("%d%d",&path[i].from,&path[i].to);
scanf("%d",&nfish);
while(nfish--){
scanf("%d",&T);
for(int i=0;i<T;i++)scanf("%d",&p[i]);
for(int i=0;i<12;i++)can[i][p[i%T]]=1;
}
for(int i=0;i<n;i++)can[12][i]=can[0][i];
begin[0].Change();
for(int i=1;i<=12;i++){
for(int j=1;j<=m;j++){
if(!can[i-1][path[j].from]&&!can[i][path[j].to])
begin[i].a[path[j].from][path[j].to]++;
if(!can[i-1][path[j].to]&&!can[i][path[j].from])
begin[i].a[path[j].to][path[j].from]++;
}
begin[0]=begin[0]*begin[i];
}
begin[0]=begin[0]^(k/12);
for(int i=1;i<=k%12;i++)begin[0]=begin[0]*begin[i];
printf("%d\n",begin[0].a[st][ed]);
}
BZOJ 1898 构造矩阵+矩阵快速幂的更多相关文章
- Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂)
Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂) Description 广义的斐波那契数列是指形如\[A_n=p*a_{n-1}+q*a_{n-2}\]的数列.今给定数列的两系数p和q, ...
- 洛谷 P4910 帕秋莉的手环 矩阵乘法+快速幂详解
矩阵快速幂解法: 这是一个类似斐波那契数列的矩乘快速幂,所以推荐大家先做一下下列题目:(会了,差不多就是多倍经验题了) 注:如果你不会矩阵乘法,可以了解一下P3390的题解 P1939 [模板]矩阵加 ...
- Qbxt 模拟赛 Day4 T2 gcd(矩阵乘法快速幂)
/* 矩阵乘法+快速幂. 一开始迷之题意.. 这个gcd有个规律. a b b c=a*x+b(x为常数). 然后要使b+c最小的话. 那x就等于1咯. 那么问题转化为求 a b b a+b 就是斐波 ...
- 【BZOJ 2323】 2323: [ZJOI2011]细胞 (DP+矩阵乘法+快速幂*)
2323: [ZJOI2011]细胞 Description 2222年,人类在银河系外的某颗星球上发现了生命,并且携带了一个细胞回到了地球.经过反复研究,人类已经完全掌握了这类细胞的发展规律: 这种 ...
- 矩阵乘法快速幂 codevs 1574 广义斐波那契数列
codevs 1574 广义斐波那契数列 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题目描述 Description 广义的斐波那契数列是指形如 ...
- BZOJ-1875 HH去散步 DP+矩阵乘法快速幂
1875: [SDOI2009]HH去散步 Time Limit: 20 Sec Memory Limit: 64 MB Submit: 1196 Solved: 553 [Submit][Statu ...
- BZOJ-2326 数学作业 矩阵乘法快速幂+快速乘
2326: [HNOI2011]数学作业 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 1564 Solved: 910 [Submit][Statu ...
- BZOJ-2875 随机数生成器 矩阵乘法快速幂+快速乘
题目没给全,吃X了... 2875: [Noi2012]随机数生成器 Time Limit: 10 Sec Memory Limit: 512 MB Submit: 1479 Solved: 829 ...
- UVA Recurrences 矩阵相乘+快速幂
题目大意: f(n) = a1 f(n - 1) + a2 f(n - 2) + a3 f(n - 3) + ... + ad f(n - d),已给递推公式,求f(n)的大小. 解题思路: n很大, ...
随机推荐
- nodejs免费空间
https://www.nitrous.io/join/N_aIGoSnOMI node免费空间,可以把自己node 代码部署到云端. 也可以在线编辑,当然也能在外网地址访问到,是自己学习nodejs ...
- animate.css引入实现动画效果
最近在网上看到很多代码都通过引入animate.css来实现动画效果,后来我便使用这种方法来尝试着写了个小案例,结果真的很好用,比我们通常情况下使用css或js实现动画效果好得多,便在此做个总结. 第 ...
- java和android文件加密小结
最近遇到一个文件加密的问题,自己读写的,安全性虽然还可以,但是速度慢,影响体验. Cipher虽然速度相当快,但是android和java有某些api存在不兼容: 问题解决: 方法引用自:https: ...
- 打包phar文件过大的问题。
根据一个开源工具得到的灵感,使用流打包,并使用token_get_all移除了所用PHP文件的空白.现在打包出来只有93k了.谢谢关注. 我一个简单的文件,加上一个symfony的process包,打 ...
- ZBrush中Flatten展平笔刷介绍
本文我们来介绍ZBrush®中的Flatten展平笔刷,Flatten笔刷能增加粗糙的平面在模型表面,利用它能够制作出完全的平面. Flatten展平笔刷 Flatten(展平):Flatten笔刷可 ...
- es6——map-set与对象对比
{ //map,set,object对比 let item={t:1}; let map=new Map(); let set=new Set(); let obj={} ...
- shell脚本切割tomcat日志文件
转自:http://www.cnblogs.com/lishun1005/p/6054816.html 鉴于在调试logback和log4j的文件切割一直无法成功,随性用shell写个脚本用来切割to ...
- 每日Linux命令--不完整命令
配置文件优化,即把默认的空行还有#注释行去掉,优化前先拷贝一份配置文件 egrep -v '^$|#' 拷贝的配置文件 > 原配置文件 mysql如何修改root用户的密码 方法1: 用SET ...
- linux中一次创建多个目录
linux中创建目录当然使用命令工具mkdir == (make directory),联想记忆法能让你记得牢固. 如果你要创建几个目录,例如:dir1目录,dir2目录,dir3目录可以这样 mkd ...
- Numpy的使用规则
之前安装的python版本是3.7 各种库都是自己一个一个下载安装的 很操心 各种缺功能 后来发现了anaconda 啊 真是一个好东西 简单来说 它就是一个涵盖大部分常用库的python包 一次安装 ...