POJ 3528
三维凸包
/*
增量法求凸包。选取一个四面体,同时把它各面的方向向量向外,增加一个点时,若该点与凸包上的某些面的方
向向量在同一侧,则去掉那些面,并使某些边与新增点一起连成新的凸包上的面。
*/ #include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cmath> using namespace std;
const int MAXN=550;
const double eps=1e-8;
struct point {
double x,y,z;
};
struct face {
int a,b,c;
bool ok;
};
int n; //初始点数
point p[MAXN]; //空间点
int trianglecnt; //凸包上三角形数
face tri[6*MAXN]; //凸包上被创建的三角形
int vis[MAXN][MAXN]; //点i到点j是属于哪一个三角形。此处是有方向 point operator -(const point &x, const point &y){
point ret;
ret.x=x.x-y.x; ret.y=x.y-y.y; ret.z=x.z-y.z;
return ret;
} point operator * (const point &u,const point &v){ //叉积
point ret;
ret.x=u.y*v.z-u.z*v.y;
ret.y=u.z*v.x-u.x*v.z;
ret.z=u.x*v.y-u.y*v.x;
return ret;
} double operator ^(const point &u,const point &v){
return (u.x*v.x+u.y*v.y+u.z*v.z);
} double dist(point t){
return sqrt(t.x*t.x+t.y*t.y+t.z*t.z);
} double ptoplane(point &tmp,face &f){ //若结果大于0,证明点面的同向,即法向量方向
point m=p[f.b]-p[f.a]; point n=p[f.c]-p[f.a];
point t=tmp-p[f.a];
return (m*n)^t;
} double farea(point a,point b,point c ){
point t1=a-c; point t2=b-c;
return fabs(dist(t1*t2));
}
void dfs(int pt, int ct);
void deal(int pt,int a,int b){
int f=vis[a][b]; //所属三角形,即原来的ab。
face add;
if(tri[f].ok){
if((ptoplane(p[pt],tri[f]))>eps) dfs(pt,f); //若点同样在该f三角形方向一侧,继续调整
else {
add.a=b; add.b=a; add.c=pt; add.ok=1;
vis[pt][b]=vis[a][pt]=vis[b][a]=trianglecnt;
tri[trianglecnt++]=add;
}
}
} void dfs(int pt, int ct){
tri[ct].ok=0; //去掉该面
deal(pt,tri[ct].b,tri[ct].a); //因为有向边ab所属三角形去掉,则反方向边必定属于另一个三角形.
deal(pt,tri[ct].c,tri[ct].b);
deal(pt,tri[ct].a,tri[ct].c);
} void construct (){
int i,j;
trianglecnt=0;
if(n<4) return ; //不可能构成一个多面体
bool tmp=true;
for(i=1;i<n;i++){ //不共点两点
if(dist(p[0]-p[i])>eps){
swap(p[1],p[i]); tmp=false; break;
}
}
if(tmp) return ;
tmp=true;
for(i=2;i<n;i++){ //不共线
if(dist((p[0]-p[1])*(p[1]-p[i]))>eps){
swap(p[2],p[i]); tmp=false; break;
}
}
if(tmp) return ;
tmp=true;
for(i=3;i<n;i++){ //四点不共面K
if(fabs((p[0]-p[1])*(p[1]-p[2])^(p[0]-p[i]))>eps){
swap(p[3],p[i]); tmp=false; break;
}
}
if(tmp) return ;
face add;
for(i=0;i<4;i++){ //使各三角形的方向向量向外,同时记录下三角形的序号
add.a=(i+1)%4; add.b=(i+2)%4; add.c=(i+3)%4; add.ok=1; //等于1表示在凸包上
if(ptoplane(p[i],add)>0) swap(add.b,add.c);
vis[add.a][add.b]=vis[add.b][add.c]=vis[add.c][add.a]=trianglecnt;
tri[trianglecnt++]=add;
}
for(i=4;i<n;i++){ //构建凸包
for(j=0;j<trianglecnt;j++){
if(tri[j].ok&&(ptoplane(p[i],tri[j]))>eps){ //增加点可见该平,即在面方向一侧
dfs(i,j); break;
}
}
}
int cnt=trianglecnt;
trianglecnt=0;
for(i=0;i<cnt;i++){ //只有ok为1的才属于凸包上的三角形
if(tri[i].ok){
tri[trianglecnt++]=tri[i];
}
}
}
double area(){
double ret=0;
for(int i=0;i<trianglecnt;i++){
ret+=farea(p[tri[i].a],p[tri[i].b],p[tri[i].c]);
}
return ret/2;
} int main(){
while(scanf("%d",&n)!=EOF){
memset(vis,0,sizeof(vis));
for(int i=0;i<n;i++)
scanf("%lf%lf%lf",&p[i].x,&p[i].y,&p[i].z);
construct();
printf("%.3lf\n",area());
}
}
POJ 3528的更多相关文章
- poj 3528 Ultimate Weapon (3D Convex Hull)
3528 -- Ultimate Weapon 一道三维凸包的题目,题目要求求出三维凸包的表面积.看懂了网上的三维凸包的代码以后,自己写的代码,跟网上的模板有所不同.调了一个晚上,结果发现错的只是数组 ...
- POJ 3528 求三维凸包表面积
也是用模板直接套的题目诶 //#pragma comment(linker, "/STACK:16777216") //for c++ Compiler #include < ...
- ACM计算几何题目推荐
//第一期 计算几何题的特点与做题要领: 1.大部分不会很难,少部分题目思路很巧妙 2.做计算几何题目,模板很重要,模板必须高度可靠. 3.要注意代码的组织,因为计算几何的题目很容易上两百行代码,里面 ...
- POJ 3579
Median Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 3528 Accepted: 1001 Descriptio ...
- POJ 3370. Halloween treats 抽屉原理 / 鸽巢原理
Halloween treats Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 7644 Accepted: 2798 ...
- POJ 2356. Find a multiple 抽屉原理 / 鸽巢原理
Find a multiple Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7192 Accepted: 3138 ...
- POJ 2965. The Pilots Brothers' refrigerator 枚举or爆搜or分治
The Pilots Brothers' refrigerator Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 22286 ...
- POJ 1753. Flip Game 枚举or爆搜+位压缩,或者高斯消元法
Flip Game Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 37427 Accepted: 16288 Descr ...
- POJ 3254. Corn Fields 状态压缩DP (入门级)
Corn Fields Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 9806 Accepted: 5185 Descr ...
随机推荐
- 麦森数--NOIP2003
题目描述 形如2P−12^{P}-12P−1 的素数称为麦森数,这时PPP 一定也是个素数.但反过来不一定,即如果PPP 是个素数,2P−12^{P}-12P−1 不一定也是素数.到1998年底,人们 ...
- bzoj 1034 [ ZJOI 2008 ] 泡泡堂BNB —— 贪心
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1034 一开始想了个很麻烦的贪心做法,对于每个 a[i],找第一个大于它的 b 匹配…… 然后 ...
- K-means (PRML) in C++
原始数据 #include <iostream>#include <fstream>#include <sstream>#include <vector> ...
- 77.招聘信息管理 EXTJS 页面
1. <%@ page language="java" import="java.util.*" pageEncoding="UTF-8&quo ...
- PCB MS SQL 将字符串分割为表变量(表值函数)
Create FUNCTION [dbo].[SplitTable]( @s varchar(max), --待分拆的字符串 ) --数据分隔符 ),), col varchar(max)) --建立 ...
- [Swift]LeetCode1066. 校园自行车分配 II | Campus Bikes II
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★➤微信公众号:山青咏芝(shanqingyongzhi)➤博客园地址:山青咏芝(https://www.cnblogs. ...
- BZOJ 3679 数位DP
思路: f[i][j]表示i位数乘积为j的方案数 j的取值最多5000多种,那就开个map存一下好了 f[i][mp[k*rec[j]]]+=f[i-1][j]; //By SiriusRen #in ...
- POJ 2976 裸的01分数规划
题意:给你n个数对(认为是a数组和b数组吧),从中取n-m个数对,如果选第i个数对,定义x[i]=1,求R=∑(a[i]*x[i])/∑(b[i]*x[i])取得最大值时R的值.输出R*100(保留到 ...
- [转载]cocos2d-触摸分发原理
本文由泰然翻译组组长 TXX_糖炒小虾 原创,版权所有,转载请注明出处并通知作者和泰然! 原作 http://www.ityran.com/archives/1326/comment-page-1 触 ...
- # Nginx设置浏览器缓存
配置语法 在location或if段里,来写. 格式 expires 30s; expires 30m; expires 2h; expires 30d; (注意:服务器的日期要准确,如果服务器的日期 ...