ACdream 1139(Sum-逆元)
J - Sum
Problem Description
You are given an N*N digit matrix and you can get several horizontal or vertical digit strings from any position.
For example:
123
456
789
In first row, you can get 6 digit strings totally, which are 1,2,3,12,23,123.
In first column, you can get 6 digit strings totally, which are 1,4,7,14,47,147.
We want to get all digit strings from each row and column, and write them on a paper. Now I wonder the sum of all number on the paper if we consider a digit string as a complete decimal number.
Input
The first line contains an integer N. (1 <= N <= 1000)
In the next N lines each line contains a string with N digit.
Output
Output the answer after module 1,000,000,007(1e9+7)。
Sample Input
3
123
456
789
Sample Output
2784
本题暴力会T
所以简化公式
对于同行/列 须要累加的值为 a1*111+a2*22+a3*3
发现规律sum=∑a(10^(n-i+1)-1)/9*i %F
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<functional>
#include<iostream>
#include<cmath>
#include<cctype>
#include<ctime>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Lson (x<<1)
#define Rson ((x<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,127,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define INF (2139062143)
#define F (1000000007)
#define MAXN (1000+10)
long long mul(long long a,long long b){return (a*b)%F;}
long long add(long long a,long long b){return (a+b)%F;}
long long sub(long long a,long long b){return (a-b+(a-b)/F*F+F)%F;}
typedef long long ll;
int n;
char a[MAXN][MAXN];
ll p10[MAXN]={0};
ll pow2(ll b)
{
if (b==1) return 10;
if (b==0) return 1;
if (p10[b]) return p10[b];
ll p=pow2(b/2)%F;
p=(p*p)%F;
if (b&1)
{
p=(p*10)%F;
}
p10[b]=p;
return p;
}
ll pow2(ll a,ll b)
{
if (b==1) return a;
if (b==0) return 1;
ll p=pow2(a,b/2)%F;
p=p*p%F;
if (b&1)
{
p=(p*a)%F;
}
return p;
}
ll tot[MAXN]={0};
ll mulinv(ll a)
{
return pow2(a,F-2);
}
int main()
{
// freopen("sum.in","r",stdin);
// freopen("sum.out","w",stdout);
scanf("%d",&n);
For(i,n)
{
scanf("%s",a[i]+1); }
/*
For(i,n)
{
For(j,n) cout<<a[i][j];
cout<<endl;
}
*/
For(i,n)
{
For(j,n) tot[i]+=a[i][j]-'0'+a[j][i]-'0';
} // For(i,n) cout<<tot[i]<<endl; // cout<<mul(pow2(10,1232),mulinv(pow2(10,1232)))<<endl;
// cout<<mulinv(9); ll c9=mulinv(9); For(i,n) p10[i]=pow2(i); ll ans=0;
For(i,n)
{
ll t=sub(p10[n-i+1],1),a=tot[i];
t=mul(t,c9);
t=mul(a,t);
ans=add(ans,mul(t,i));
}
cout<<ans<<endl; return 0;
}
ACdream 1139(Sum-逆元)的更多相关文章
- acdream Divide Sum
Divide Sum Time Limit: 2000/1000MS (Java/Others)Memory Limit: 128000/64000KB (Java/Others) SubmitSta ...
- ACdream: Sum
Sum Time Limit: 2000/1000MS (Java/Others)Memory Limit: 128000/64000KB (Java/Others) SubmitStatisticN ...
- acdream 1431 Sum vs Product
Sum vs Product Time Limit: 4000/2000MS (Java/Others)Memory Limit: 128000/64000KB (Java/Others) Submi ...
- ACdream 1431——Sum vs Product——————【dfs+剪枝】
Sum vs Product Time Limit: 2000/1000MS (Java/Others) Memory Limit: 128000/64000KB (Java/Others) S ...
- ACDream - Power Sum
先上题目: Power Sum Time Limit: 20000/10000MS (Java/Others) Memory Limit: 128000/64000KB (Java/Others) S ...
- ACDream - Lowbit Sum
先上题目: C - Lowbit Sum Time Limit: 2000/1000MS (Java/Others) Memory Limit: 128000/64000KB (Java/Others ...
- Codeforces 963 A. Alternating Sum(快速幂,逆元)
Codeforces 963 A. Alternating Sum 题目大意:给出一组长度为n+1且元素为1或者-1的数组S(0~n),数组每k个元素为一周期,保证n+1可以被k整除.给a和b,求对1 ...
- 2016 Asia Jakarta Regional Contest J - Super Sum UVALive - 7720 【快速幂+逆元】
J-Super Sum 题目大意就是给定N个三元组<a,b,c>求Σ(a1^k1*a2^k2*...*ai^ki*..an^kn)(bi<=ki<=ci) 唉.其实题目本身不难 ...
- Codeforces Round #680 (Div. 2, based on Moscow Team Olympiad) D. Divide and Sum (思维,数学,逆元)
题意:有一个长度为\(2n\)数组,从中选分别选\(n\)个元素出来组成两个序列\(p\)和\(q\),(\(p\)和\(q\)中只要有任意一个元素在\(a\)的原位置不同,就算一个新的情况),选完后 ...
随机推荐
- js-DOM操作基本知识
- 【Codeforces Round #499 (Div. 2) E】Border
[链接] 我是链接,点我呀:) [题意] 给你n个数字,每个数字可以无限用,每种方案可以组成一个和,问你%k的结果有多少种不同的结果. [题解] 相当于给你一个方程 \(x_1*a_1+x_2*a_2 ...
- [TS] Class Properties Public, Private and Read Only Modifiers
In the constructor, we want to set the prop to readonly, you need to do like this: class Superhero { ...
- Android程序之全国天气预报查询(聚合数据开发)
一.项目演示效果例如以下: 项目源码下载地址: http://pan.baidu.com/s/1pL6o5Mb password:5myq 二.使用 聚合数据SDK: (1)聚合数据官网地址:http ...
- shell文本过滤编程(一):grep和正則表達式
[版权声明:转载请保留出处:blog.csdn.net/gentleliu.Mail:shallnew at 163 dot com] Linux系统中有非常多文件,比方配置文件.日志文件.用户文件等 ...
- intellij idea 13&14 插件推荐及高速上手建议 (已更新!)
早些年 在外企的时候,公司用的是intellij idea ,当时也是从eclipse.MyEclipse转过去的非常是不习惯. 用了一周明显感觉爱上它了.由于它非常智能,并且能纠正你非常多不好的习惯 ...
- Resolving Problems installing the Java JCE Unlimited Strength Jurisdiction Policy Files package--转
原文地址:https://www.ca.com/us/services-support/ca-support/ca-support-online/knowledge-base-articles.tec ...
- java高级——生产者消费者问题
多线程是一个很重要的应用,本节讲述多线程中同步问题 public class ThreadDemo { public static void main(String[] args) { Resourc ...
- java 获取线程id
如何获取正在运行的线程的ID? 解决方法 下面的示例演示如何使用getThreadId() 方法一个正在运行线程的ID. public class Main extends Object implem ...
- HDU 1548 A strange lift【BFS】
题意:给出一个电梯,给出它的层数f,给出起点s,终点g,以及在每一层能够上或者下w[i]层,问至少需要按多少次按钮到达终点. 和POJ catch that cow一样,直接用了那一题的代码,发现一直 ...