caioj 1154 同余方程(模版)
求x的最小正整数解,使得ax=b(mod m)
那么显然ax - b = m * y
ax - my = b
那么就套入Ax+By = K的不定方程中,然后用exgcd求解即可
但这道题求最大正整数解,对于一组解,有这样一个推论
x = x0 +k*(b/gcd(a,b))
y = y0-k*(a/gcd(a,b))
k为任意正整数 可以带入方程中算一下,依然满足方程。
那么也就是说x的变化幅度为b / gcd(a,b)
令d = gcd(a,b), B = b
那么最小正整数解就是 (x * (K / d)) % (B/d) + (B/d)) % (B/d)
x * (K / d)是一个解,然后模掉(B/d),也就是变成和0最近的解
如果是负数,再加上一个(B/d)就整数,然后再模一个(B/d)不会改变值
如果是整数,加上(B/d)再模(B/d)也不会改变值。
所以这样求出来的就是最小正整数解。
最后数论尽量用long long 保险一些,反正一般不开数组,只是开变量,不会耗很多空间,不开白不开。
#include<cstdio>
#include<cctype>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
#define _for(i, a, b) for(int i = (a); i <= (b); i++)
using namespace std;
typedef long long ll;
void read(ll& x)
{
int f = 1; x = 0; char ch = getchar();
while(!isdigit(ch)) { if(ch == '-') f = -1; ch = getchar(); }
while(isdigit(ch)) { x = x * 10 + ch - '0'; ch = getchar(); }
x *= f;
}
void exgcd(ll a, ll b, ll& d, ll& x, ll& y)
{
if(!b) { d = a; x = 1; y = 0; }
else { exgcd(b, a % b, d, y, x); y -= x * (a / b); }
}
int main()
{
ll a, b, m, x, y, d;
read(a); read(b); read(m);
ll A = a, B = -m, K = b;
exgcd(A, B, d, x, y);
if(K % d != 0) puts("no solution!");
else printf("%lld", ((x * (K / d)) % (B/d) + (B/d)) % (B/d));
return 0;
}
caioj 1154 同余方程(模版)的更多相关文章
- caioj 1155 同余方程组(模版)
第一步,和同余方程一样,转化一下 两式相减得 这就转化为了求不定方程,用exgcd 求出x,要化成最小正整数解,避免溢出 然后可以求出P出来. 这个时候要把前两个式子转化成一个式子 设求出来的是P' ...
- 【poj 2115】C Looooops(数论--拓展欧几里德 求解同余方程 模版题)
题意:有一个在k位无符号整数下的模型:for (variable = A; variable != B; variable += C) statement; 问循环的次数,若"永不停息&q ...
- 【hdu 1576】A/B(数论--拓展欧几里德 求逆元 模版题)
题意:给出 A%9973 和 B,求(A/B)%9973的值. 解法:拓展欧几里德求逆元.由于同余的性质只有在 * 和 + 的情况下一直成立,我们要把 /B 转化为 *B-1,也就是求逆元. 对于 B ...
- Hash大法
内容参考<算法竞赛进阶指南> 之前集训的时候听老师讲过,字符串题目中,hash一般不是正解,但是是一个优秀的暴力,可以拿比较多的部分分. hash涉及内容很多,这里只讨论字符串hash 可 ...
- caioj 1236 最近公共祖先 树倍增算法模版 倍增
[题目链接:http://caioj.cn/problem.php?id=1236][40eebe4d] 代码:(时间复杂度:nlogn) #include <iostream> #inc ...
- 【poj 2891】Strange Way to Express Integers(数论--拓展欧几里德 求解同余方程组 模版题)
题意:Elina看一本刘汝佳的书(O_O*),里面介绍了一种奇怪的方法表示一个非负整数 m .也就是有 k 对 ( ai , ri ) 可以这样表示--m%ai=ri.问 m 的最小值. 解法:拓展欧 ...
- Luogu P1082 同余方程(exgcd模版)
传送门 求ax%b = 1,即ax - by = 1: 很明显这是一个exgcd的形式. 那么要做这道题,首先需要gcd和exgcd的算法作铺垫. gcd(辗转相膜法): int gcd(int a, ...
- codevs 1200:同余方程
题目描述 Description 求关于 x 同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入描述 Input Description 输入只有一行,包含两个正整数 a, b,用 一个 空 ...
- 创建ABPboilerplate模版项目
本文是根据角落的白板报的<通过ABPboilerplate模版创建项目>一文的学习总结,感谢原文作者角落的白板报. 1 准备 开发环境: Visual Studio 2015 update ...
随机推荐
- Pyhton学习——Day4
'''y=2*x+1x=3y->7x=3y->7'''# def test(x):# '''# 2*x+1# :param x:整形数字# :return: 返回计算结果# '''# y= ...
- 广义线性模型------逻辑回归和softmax回归
1.广义线性模型 2.逻辑回归 3.softmax回归
- 电子邮件的三个协议: SMTP、IMAP、POP3
个人总结: 读完这篇文章需要10分钟 讲解了跟电子邮件有关的三个协议: SMTP(simple message transfer protocol 简单信息传输协议 IMAP (internet me ...
- [剑指offer] 14. 链表中倒数第K个节点+翻转+逆序打印+合并两个排序链表 + 链表相交(第一个公共节点) (链表)
题目描述 输入一个链表,输出该链表中倒数第k个结点. 思路: 两个指针,起始位置都是从链表头开始,第一个比第二个先走K个节点,当第一个走到链表尾时,第二个指针的位置就是倒数第k个节点.(两指针始终相 ...
- LCA题集
点的距离(模板题) 树中两点间的距离就是d[u] + d[v] - 2 * d[lca(u, v)] #include<bits/stdc++.h> #define REP(i, a, b ...
- STM32 HAL库 IIC 协议库函数
/* 第1个参数为I2C操作句柄 第2个参数为从机设备地址 第3个参数为从机寄存器地址 第4个参数为从机寄存器地址长度 第5个参数为发送的数据的起始地址 第6个参数为传输数据的大小 第7个参数为操作超 ...
- java中 flush()方法的作用
flush() 是清空,而不是刷新啊.一般主要用在IO中,即清空缓冲区数据,就是说你用读写流的时候,其实数据是先被读到了内存中,然后用数据写到文件中,当你数据读完的时候不代表你的数据已经写完了,因为还 ...
- 一个ibatis映射文件的例子(包含增删改单查,多查)
<?xml version="1.0" encoding="UTF-8" ?><!DOCTYPE mapper PUBLIC "-/ ...
- PE文件结构(三) 输入表
PE文件结构(三) 參考 书:<加密与解密> 视频:小甲鱼 解密系列 视频 输入表 输入函数,表示被程序调用可是它的代码不在程序代码中的,而在dll中的函数.对于这些函数.磁盘上的可执行文 ...
- 使用Ant打包Android应用具体解释
计划写个完整的使用Ant打包Android应用的系列文章.三篇文章.首篇具体介绍採用Ant打包Android应用的流程.列出部分定制问题及其解决方法,第二篇介绍我理解的Ant打包的思路与主要的概念和使 ...