国庆 day 3 上午
a
【问题描述】
你是能看到第一题的 friends 呢。
——hja
怎么快速记单词呢?也许把单词分类再记单词是个不错的选择。何大爷给
出了一种分单词的方法,何大爷认为两个单词是同一类的当这两个单词的各个
字母的个数是一样的,如 dog 和 god。现在何大爷给了你?个单词,问这里总共
有多少类单词。
【输入格式】
第一行一个整数n代表单词的个数。
接下来n行每行一个单词。
【输出格式】
一行一个整数代表答案。
【样例输入】
3
AABAC
CBAAA
AAABB
【样例输出】
2
【数据范围与规定】
70%的数据,1 ≤ ? ≤ 100。
对于100%的数据,1 ≤ ? ≤ 10000,所有单词由大写字母组成。
P99 zhxb
思路:很简单,sort一下,set记录就好。
#include<set>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int n;
string s;
set<string>s1;
using namespace std;
int main(){
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
cin>>n;
for(int i=;i<=n;i++){
cin>>s;
sort(s.begin(),s.end());
s1.insert(s);
}
cout<<s1.size();
}
b
【问题描述】
你是能看到第二题的 friends 呢。
——laekov
长度为?的铁丝,你可以将其分成若干段,并把每段都折成一个三角形。你
还需要保证三角形的边长都是正整数并且三角形两两相似,问有多少种不同的
分法。
【输入格式】
一行一个整数n。
【输出格式】
一行一个整数代表答案对10 9 + 7取模之后的值。
【样例输入 1
6
【样例输出 1】
2
【样例输入 2】
9
【样例输出 2】
6
【样例解释 2】
(1,1,1),(2,2,2);(2,2,2),(1,1,1)算两种方案。
【数据范围与规定】
对于30%的数据,1≤n≤100。
对于60%的数据,1 ≤n≤ 1000。
对于100%的数据,1 ≤ n≤ 10^6 。
P99 zhxc
思路:打表+
以下解题思路转自xxy大佬的博客
设分成的每段长为Li,g=gcd(Li)
那么一共有n/g 个单位
设f[g]表示以g为周长,且三边gcd为1 的三角形的个数
设h[n/g]表示把n/g个单位 分配给任意多个三角形的个数
那么 ans=Σ f[g]*h[n/g] (g|n)
求f[g]:
设g=a+b+c,且a<=b<=c
对b和c的大小分两种情况讨论:
① b==c :
==> g=a+2b,那么b∈[ceil(g/3),floor((g-1)/2)]
所以f[g]=floor((g-1)/2)- ceil(g/3) +1
② b<c :
a,b,c 的每一种方案都可以看做由 a,b,c-1的每一种方案转移过来
但有一种除外:a+b=c,因为此时a,b,c-1 合法,a,b,c 不合法
当g为偶数时,a+b+a+b=g,g=2*(a+b),所以有floor(g/4)个
所以f[g]=f[g-1]+ (b&1)? 0 : -g/4
然后因为要求三边长互质,所以枚举g的每个因数k,f[g]-=f[k]
求h[i]:
把i个物品分成任意份的方案数=C(i-1,0)+C(i-1,1)+……+C(i-1,i-1)
= 2^(i-1)
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define MAXN 1000010
#define mod 1000000007
using namespace std;
int n,ans;
int f[MAXN],dp[MAXN],more[MAXN];
void pre(){
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;f[]=;
}
void work(){
dp[]=;
for(int i=;i<=n;i++){
dp[i]=dp[i-]+(i-)/-i/+(i%?:);
if(i%==) dp[i]-=i/;
dp[i]%=mod;
if(dp[i]<) dp[i]+=mod;
}
more[]=;
for(int i=;i<=n;i++){
more[i]=(more[i-]*)%mod;
for(int j=;i*j<=n;j++){
dp[i*j]-=dp[i];
if(dp[i*j]<) dp[i*j]+=mod;
}
}
return ;
}
int main(){
freopen("b.in","r",stdin);
freopen("b.out","w",stdout);
pre();
scanf("%d",&n);
if(n<=){
cout<<f[n];
return ;
}
else{
work();
for(int i=;i*i<=n;i++){
if(n%i!=) continue;
ans=(ans+1ll*dp[i]*more[n/i])%mod;
if(i*i!=n)
ans=(ans+1ll*dp[n/i]*more[i])%mod;
}
cout<<ans;
}
}
c
【问题描述】
你是能看到第三题的 friends 呢。
——aoao
在小学的时候,我们都学过正视图和左视图。现在何大爷用一些小方块摆了
一个图形,并给出了你这个图形的左视图和正视图。现在何大爷希望知道,在给
定正视图和左视图的情况下,原来的立体图形有多少种可能的情况?
【输入格式】
第一行两个整数n,m,代表在左视图和正视图中分别有多少列。
第二n个整数,代表在左视图中从左至右每一列的高度。
第三行m个整数,代表在正视图中从左至有每一列的高度。
【输出格式】
一行一个整数代表答案对10 9 + 9取模之后的值。
【样例输入 1】
2 2
1 1
1 1
【样例输出 1】
7
【样例输入 2】
4 5
5 2 4 1
5 2 4 0 1
【样例输出 2】
429287
【数据规模与约定】
对于20%的数据,1 ≤ n,m ≤ 5,每列的最大高度不超过5。
对于40%的数据,n + m ≤ 18。
对于100%的数据,1 ≤ n,m ≤ 50,每列最大高度不超过10000。
以下解题思路转自xxy大佬的博客
思路:容斥原理
解决本题的关键:行交换。列交换对答案不影响
将左视图按从下往上递减,正视图从左往右递减排列
那整张图的高度从左下到右上呈阶梯状递减
这样所有高度相同的呈现倒‘L’形,如下图所示蓝色部分
如果我们按高度递减的顺序依次计算每个倒‘L’形的方案数,那么这些倒‘L’形相对独立
答案就是所有倒‘L’形答案的乘积
如何计算单个倒‘L’形的答案?——容斥原理
假设上图为已经按高度排好序的图
设当前正在处理高度为h的倒‘L’形
令nn表示当前有nn行的左视图高度为h,mm表示当前有mm列的主视图高度为h
n表示当前有n行的左视图高度>=h,m表示当前有m列的主视图高度>=h
定义性质pk表示 在这nn行mm列中,有k行/列不满足看到的高度为h
那根据容斥原理,
不具有任何一个性质p的方案和=
全集-Σ|pi|+Σ|pi∩pj|-Σ|pi∩pj∩pk|+…+(-1)^m*|p1∩p2∩…∩pm|
也就是所有方案-所有1行/列不满足条件的方案+所有2行/列不满足条件的方案-……
如何求有k行/列不满足条件的方案数?
设现在要求在倒‘L’形中,有i行j列不满足条件的方案数A,i+j=k
那么A分为两部分
① i行j列不能满足条件的部分:
当前高度为h,不能满足条件,每一个各自可以填[0,h-1],每个格子有h种方案
所以此时方案数=h^ (n*m-(n-i)*(m-j))
② 倒‘L’形中其他位置可以任意填的部分
当前高度为h,任意填就是可以填[0,h],每个各自有h+1种方案
所以此时的方案数=(h+1)^((n-i)*(m-j)-(n-nn)*(m-mm))
这是选定i行j列,所以还要乘上在nn行中选i行,在mm列中选j列的方案
终上所述,每个倒‘L’形 的答案为 (-1)^(i+j)* C(nn,i)* C(mm,j)* h^ (n*m-(n-i)*(m-j)) * (h+1)^((n-i)*(m-j)-(n-nn)*(m-mm))
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define MAXN 10001
#define mod 1000000009
using namespace std;
int n,m;
int c[][];
int a[MAXN],b[MAXN];
void pre(int k){
for(int i=;i<=k;i++) c[i][]=;
for(int i=;i<=k;i++)
for(int j=;j<=i;j++)
c[i][j]=(c[i-][j]+c[i-][j-])%mod;
}
int pow(int a,int b){
int res=;
for(;b;b>>=,a=1ll*a*a%mod)
if(b&) res=1ll*res*a%mod;
return res;
}
int cal(int n,int m,int nn,int mm,int h){
int res=,tmp;
for(int i=;i<=nn;i++)
for(int j=;j<=mm;j++){
tmp=1ll*pow(h,n*m-(n-i)*(m-j))*pow(h+,(n-i)*(m-j)-(n-nn)*(m-mm))%mod*c[nn][i]%mod*c[mm][j]%mod;
if((i+j)&) res=((res-tmp)%mod+mod)%mod;
else res+=tmp,res%=mod;
}
return res;
}
int main(){
freopen("c.in","r",stdin);
freopen("c.out","w",stdout);
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++){
int x;
scanf("%d",&x);
a[x]++;
}
for(int i=;i<=m;i++){
int x;
scanf("%d",&x);
b[x]++;
}
pre(max(n,m));
long long res=;
int nown=,nowm=;
for(int i=;i>=;i--)
if(a[i]||b[i]){
nown+=a[i];
nowm+=b[i];
res=1ll*res*cal(nown,nowm,a[i],b[i],i)%mod;
}
cout<<res;
}
国庆 day 3 上午的更多相关文章
- 国庆 day 7 上午
思路:模拟,set记录一下. #include<set> #include<cstdio> #include<cstring> #include<iostre ...
- 国庆 day 2 上午
一道图论神题(god) Time Limit:1000ms Memory Limit:128MB 题目描述 LYK有一张无向图G={V,E},这张无向图有n个点m条边组成.并且这是一张带权图,只有 ...
- 国庆 day 6 上午
1. 角谷猜想(kakutani.pas/c/cpp)(kakutani.in/out)时间限制:1s/空间限制:256M[题目描述] 某个名字末尾是 654321 的小 A 同学是个大家眼中公认的学 ...
- 2018国庆YALI集训游记
想了想,像之前那样简略地叙述题意和做法,根本没讲清楚,没有任何意义,还不如写写自己的感受. 感觉YALI真的是一所挺不错的学校吧.总是能有一机房的julao轮番吊打你,总是能有集训队的奆佬来给你出dl ...
- SSH-Struts第三弹:传智播客视频教程第一天上午的笔记
一. 框架概述1.三大框架 : 是企业主流 JavaEE 开发的一套架构 Struts2 + Spring + Hibernate 2. 什么是框架?为什么要学框架 ?框架 是 实现部分功能的代码 ( ...
- JAVA判断当前时间是上午am还是下午pm
//结果为"0"是上午 结果为"1"是下午 public class GregorianTest { public static void main(Strin ...
- PKUSC 模拟赛 day2 上午总结
今天上午考得不是很好,主要还是自己太弱QAQ 开场第一题给的图和题意不符,搞了半天才知道原来是走日字形的 然后BFS即可 #include<cstdio> #include<cstr ...
- PKUSC 模拟赛 day1 上午总结
思考了一下第二题,觉得有无数种乱搞做法 类似什么bitset压位,MCS染色之类奇怪的做法 然而都是玄学正确性或者玄学复杂度 先放题解把 第一题显然具有单调性,二分就可以啦 O(nlogn),貌似输出 ...
- hihoCoder 1041 国庆出游 (DFS)
题意: 小Hi和小Ho准备国庆期间去A国旅游.A国的城际交通比较有特色:它共有n座城市(编号1-n):城市之间恰好有n-1条公路相连,形成一个树形公路网.小Hi计划从A国首都(1号城市)出发,自驾遍历 ...
随机推荐
- Struts2SpringHibernate整合示例,一个HelloWorld版的在线书店(项目源码+详尽注释+单元测试)
Struts2,Spring,Hibernate是Java Web开发中最为常见的3种框架,掌握这3种框架是每个Java Web开发人员的基本功. 然而,很多初学者在集成这3个框架的时候,总是会遇到各 ...
- 题解 P1337 【[JSOI2004]平衡点 / 吊打XXX】
这道题调了好久,果然非洲人是得不到眷顾的吗... 本题采用模拟退火解决. 模拟退火是一种简洁明了而又高效的近似算法,基本上可以套到任何求最优解的题目上去. 它的原理是模拟物理中金属退火的现象,凭借选手 ...
- 2、Koa2 路由+cookie
一.koa2 原生路由的实现 const Koa = require('koa'); const app = new Koa(); const fs = require('fs'); function ...
- POJ——T 3159 Candies
http://poj.org/problem?id=3159 Time Limit: 1500MS Memory Limit: 131072K Total Submissions: 33328 ...
- HDU 2686 Matrix(最大费用最大流+拆点)
题目链接:pid=2686">http://acm.hdu.edu.cn/showproblem.php?pid=2686 和POJ3422一样 删掉K把汇点与源点的容量改为2(由于有 ...
- 实战:percona-xtrabackup 2.1.9 for mysql 5.6.19
----1.编译安装percona-xtrabackup yum install cmake gcc gcc-c++ libaio libaio-devel automake autoconf bzr ...
- emitter 增强 多条件触发
;(function(global ,undefined){ var evts = {} ,onceTag = '__event_once' function emit(event ){ ) if ( ...
- 本书已出版<拨云见日:基于android的内核与系统架构源代码分析 >
已陆续倒到各大电商站点及新华书店 http://item.jd.com/11594135.html http://product.china-pub.com/4472138 http://www.am ...
- ElasticSearch 深入理解 三:集群部署设计
ElasticSearch 深入理解 三:集群部署设计 ElasticSearch从名字中也可以知道,它的Elastic跟Search是同等重要的,甚至以Elastic为主要导向. Elastic即可 ...
- hdoj--1384--Intervals(差分约束)
Intervals Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total ...