【链接】 我是链接,点我呀:)

【题意】

在这里输入题意

【题解】

k%i=k-(k/i)*i
则∑k%i = n*k-∑(k/i)*i
因为k/i是整除运算。
所以会有某一段连续的i,它们的k/i的值都是相同的
那么 这一段连续的i用等差数列求和公式O(1)搞一下就好。
(然后i可以直接跳到上界+1

复杂度是根号N级别的。

连续一段的上界注意不要超过n.

超过n就赋值为n就好

【代码】

#include <cstdio>
#include <algorithm>
#define ll long long
using namespace std; ll n,k,ans; int main()
{
scanf("%lld%lld",&n,&k);
ans = n*k;
if (n > k) n = k;
ll up = 0;
for (int i = 1;i <= n;i = up+1){
ll temp = k/i;
up = k/temp;
if (up>=n) up = n;
//(i,i+1,i+2...up)*temp
ans-=1LL*(i+up)*(up-i+1)/2*temp;
}
printf("%lld\n",ans);
return 0;
}

【BZOJ 1257】[CQOI2007]余数之和的更多相关文章

  1. Bzoj 1257 [CQOI2007]余数之和 (整除分块)

    Bzoj 1257 [CQOI2007]余数之和 (整除分块) 题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1257 一道简单题. 题目 ...

  2. BZOJ 1257: [CQOI2007]余数之和sum

    1257: [CQOI2007]余数之和sum Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 3769  Solved: 1734[Submit][St ...

  3. bzoj 1257: [CQOI2007]余数之和sum 数学 && 枚举

    1257: [CQOI2007]余数之和sum Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 1779  Solved: 823[Submit][Sta ...

  4. BZOJ 1257: [CQOI2007]余数之和sum( 数论 )

    n >= k 部分对答案的贡献为 k * (n - k) n < k 部分贡献为 ∑ (k - ⌊k / i⌋ * i)  = ∑  , ⌊k / i⌋ 相等的数是连续的一段, 此时这段连 ...

  5. BZOJ 1257: [CQOI2007]余数之和sum【神奇的做法,思维题】

    1257: [CQOI2007]余数之和sum Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 4474  Solved: 2083[Submit][St ...

  6. BZOJ 1257: [CQOI2007]余数之和

    1257: [CQOI2007]余数之和 Time Limit: 5 Sec  Memory Limit: 128 MB Description 给出正整数n和k,计算j(n, k)=k mod 1 ...

  7. [原博客] BZOJ 1257 [CQOI2007] 余数之和

    题目链接题意: 给定n,k,求 ∑(k mod i) {1<=i<=n} 其中 n,k<=10^9. 即 k mod 1 + k mod 2 + k mod 3 + … + k mo ...

  8. [BZOJ 1257] [CQOI2007] 余数之和sum 【数学】

    题目链接:BZOJ - 1257 题目分析 首先, a % b = a - (a/b) * b,那么答案就是 sigma(k % i) = n * k - sigma(k / i) * i     ( ...

  9. bzoj 1257: [CQOI2007]余数之和 (数学+分块)

    Description 给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值 其中k mod i表示k除以i的余数. 例如j(5 ...

  10. bzoj 1257 [CQOI2007]余数之和——数论分块

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1257 \( n\%i = n - \left \lfloor n/i \right \rfl ...

随机推荐

  1. 😈 HTTP 学习笔记

  2. python3编写登录接口

    #/usr/bin/env python#yehui'''作业一:博客 作业二:编写登陆接口 输入用户名密码 认证成功后显示欢迎信息 输错三次后锁定'''import getpass, os, pic ...

  3. Python学习笔记(4)列表

    2019-02-26 列表(list):①创建方法:用‘[ ]’,将数据包括起来,数据之间用逗号隔开.②空列表:empty = []③增删改查: 1)增加: a.append()方法——将元素添加到列 ...

  4. ZJU 2676 Network Wars

    Network Wars Time Limit: 5000ms Memory Limit: 32768KB This problem will be judged on ZJU. Original I ...

  5. ZJU 2605 Under Control

    Under Control Time Limit: 2000ms Memory Limit: 65536KB This problem will be judged on ZJU. Original ...

  6. Spring+Mybatis+SpringMVC后台与前台分页展示实例

    摘要:本文实现了一个后台由spring+Mybatis+SpringMVC组成,分页采用PageHelper,前台展示使用bootstrap-paginator来显示效果的分页实例.整个项目由mave ...

  7. 练练脑,继续过Hard题目

    http://www.cnblogs.com/charlesblc/p/6384132.html 继续过Hard模式的题目吧.   # Title Editorial Acceptance Diffi ...

  8. Executors线程池关闭时间计算

    Executors线程池关闭时间计算 学习了:http://blog.csdn.net/wo541075754/article/details/51564359 https://www.cnblogs ...

  9. oracle 11g sql developer安装后无法使用

    oracle11g安装后出现   再去官网单独下来个sql developer安装 sql developer须要jre支持

  10. rsync来传输文件(可断点续传)

    scp传文件的话如果出错就得重新来过, 用rsync可以实现断点上传的功能   大概就是这样用:  rsync -P --rsh=ssh home.tar 192.168.205.34:/home/h ...