https://zybuluo.com/ysner/note/1177340

题面

有一颗大小为\(n\)的树\(A\),现加上一个节点并打乱编号,形成树\(B\),询问加上的节点最后编号是多少?

  • \(n\leq10^5\)

解析

判断树的同构显然需要树哈希。

可以先将树\(A\)中以每个节点为根的哈希值算出来存进一只\(unordered\_set\)中,

然后在树\(B\)中随便找一个不是叶节点的节点为根,枚举去掉一个叶节点,看根的\(Hash\)值是否能在\(unordered\_set\)中找到。

什么?只会\(O(n^2)\)求树的哈希值?

我们需要思考一种\(Hash\)函数,在根变动时,只影响新根和原根两节点的值,这样就可以每枚举到一个点,就算出其为根时的哈希值。因为要先\(DP\)一遍才能换根,所以复杂度为\(O(2n)\)。

并且函数需要很容易去掉某个点的影响。(异或)

\[Hash_{fa}=(Hash_{son1}+Base)\bigoplus(Hash_{son2}+Base)
\bigoplus ...+size_{fa}*p+1\]

一般树哈希还要考虑\(deep\),当然如果你要换根\(DP\),考虑\(deep\)的影响就没什么用啦。

#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<tr1/unordered_set>
#define ll unsigned long long
#define re register
#define il inline
#define fp(i,a,b) for(re int i=a;i<=b;i++)
#define fq(i,a,b) for(re int i=a;i>=b;i--)
using namespace std;
const int N=5e5+10,p=1e9+7;
std::tr1::unordered_set<ll>Q;
int h[N],cnt,in[N],sz[N],n;
ll Hash[N],ans=1e18;
struct Edge{int to,nxt;}e[N<<1];
il void add(re int u,re int v){e[++cnt]=(Edge){v,h[u]};h[u]=cnt;}
il void dfs(re int u,re int fa)
{
sz[u]=1;re ll sum=0;
for(re int i=h[u];i+1;i=e[i].nxt)
{
re int v=e[i].to;
if(v==fa) continue;
dfs(v,u);
sz[u]+=sz[v];
Hash[u]=Hash[u]^(Hash[v]+17);
}
Hash[u]+=sz[u]*p+1;
}
il void dfs1(re int u,re int fa)
{
Q.insert(Hash[u]);
for(re int i=h[u];i+1;i=e[i].nxt)
{
re int v=e[i].to;
if(v==fa) continue;
re ll tmp=(Hash[u]-sz[u]*p-1)^(Hash[v]+17);
tmp+=(n-sz[v])*p+1;
Hash[v]-=sz[v]*p+1;
Hash[v]^=(tmp+17);
Hash[v]+=n*p+1;
sz[v]=n;
dfs1(v,u);
}
}
il void dfs2(re int u,re int fa)
{
for(re int i=h[u];i+1;i=e[i].nxt)
{
re int v=e[i].to;
if(v==fa) continue;
re ll tmp=(Hash[u]-sz[u]*p-1)^(Hash[v]+17);
if(in[v]>1)
{
tmp+=(sz[u]-sz[v])*p+1;
Hash[v]-=sz[v]*p+1;
Hash[v]^=(tmp+17);
Hash[v]+=sz[u]*p+1;
sz[v]=sz[u];
dfs2(v,u);
}
else
{
tmp+=(sz[u]-sz[v])*p+1;
if(Q.count(tmp)) ans=min(ans,1ull*v);
}
}
}
int main()
{
memset(h,-1,sizeof(h));
n=gi();
fp(i,1,n-1)
{
re int u=gi(),v=gi();
add(u,v);add(v,u);
}
dfs(1,0);//计算树A哈希值
dfs1(1,0);//换根算树A哈希值
memset(h,-1,sizeof(h));memset(Hash,0,sizeof(Hash));
fp(i,1,n)
{
re int u=gi(),v=gi();
++in[u];++in[v];
add(u,v);add(v,u);
}
re int i;
for(i=1;i<=n;i++) if(in[i]>1) break;//随便找一个不是叶节点的节点为根
dfs(i,0);//算树B哈希值
dfs2(i,0);//对叶子节点,试去掉它会怎么样;对非叶子节点,进行换根DP
printf("%lld\n",ans);
return 0;
}

[JSOI2016]独特的树叶的更多相关文章

  1. Luogu P4323 [JSOI2016]独特的树叶

    一道比较好的树Hash的题目,提供一种不一样的Hash方法. 首先无根树的同构判断一般的做法只有树Hash,所以不会的同学可以做了Luogu P5043 [模板]树同构([BJOI2015]树的同构) ...

  2. BZOJ 4754 [JSOI2016]独特的树叶 | 树哈希判同构

    题目链接 这道题是一道判断无根树同构的模板题,判断同构主要的思路就是哈希. 一遇到哈希题,一百个人能有一百零一种哈希方式,这篇题解随便选用了一种--类似杨弋<Hash在信息学竞赛中的一类应用&g ...

  3. bzoj4754[JSOI2016]独特的树叶

    这个题....别人写得怎么都....那么短啊? 我怎么....WA了好几次啊....怎么去loj扒了数据才调出来啊? 这个算法...怎么我还是不知道对不对啊 怎么回事啊怎么回事啊怎么回事啊? 请无视上 ...

  4. BZOJ4754 JSOI2016独特的树叶(哈希)

    判断两棵无根树是否同构只需要把重心提作根哈希即可.由于只添加了一个叶子,重心的位置几乎不发生偏移,所以直接把两棵树的重心提起来,逐层找哈希值不同且对应的两子树即可.被一个普及组子问题卡一年. #inc ...

  5. BZOJ4754 & 洛谷4323 & LOJ2072:[JSOI2016]独特的树叶——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4754 https://www.luogu.org/problemnew/show/P4323 ht ...

  6. Luogu 4323 [JSOI2016]独特的树叶

    新技能get 树哈希,考虑到两棵树相同的条件,把每一个结点的哈希值和树的siz写进哈希值里去. 做出A树每一个结点为根时的树的哈希值丢进set中,然后暴力枚举B树中度数为1的点,求出删掉这个点之后的哈 ...

  7. P4323 [JSOI2016]独特的树叶(树哈希)

    传送门 树哈希?->这里 反正大概就是乱搞--的吧-- //minamoto #include<bits/stdc++.h> #define R register #define l ...

  8. bzoj 4754: [Jsoi2016]独特的树叶

    不得不说这是神题. %%%   http://blog.csdn.net/samjia2000/article/details/51762811 #include <cstdio> #in ...

  9. 【BZOJ4754】独特的树叶(哈希)

    [BZOJ4754]独特的树叶(哈希) 题面 BZOJ 给定一个\(n\)个节点的树A和一个\(n+1\)个节点的树\(B\) 求\(B\)的一个编号最小的节点,使得删去这个节点后\(A,B\)同构 ...

随机推荐

  1. ProE常用曲线方程:Python Matplotlib 版本代码(蝴蝶曲线)

    花纹的生成可以使用贴图的方式,同样也可以使用方程,本文列出了几种常用曲线的方程式,以取代贴图方式完成特定花纹的生成. 注意极坐标的使用................. 前面部分基础资料,参考:Pyt ...

  2. mvc EF 出现异常, 能提示出那个字段出现问题

    } catch (DbEntityValidationException ex) { message = "添加异常"; desc = " {" + ex.Me ...

  3. Git学习总结(标签管理)

    在Git中打标签非常简单,首先,切换到需要打标签的分支上: 然后,敲命令git tag <name>就可以打一个新标签: $ git tag v1. 可以用命令git tag查看所有标签: ...

  4. js的基础运用

    总结: 1.定义:分为隐式定义和显式定义可以先定义后赋值. 2.+:当两边都是数值则运行加法运算,若一遍是字符型则进行拼接. 3.数值变字符:数值变量.toString()方法. 字符变数值:通过加一 ...

  5. 爬虫文件存储-1:mysql

    1.连接并创建数据库 import pymysql db = pymysql.connect(host='localhost', user='root', password='root', port= ...

  6. C. Vladik and Memorable Trip DP

    C. Vladik and Memorable Trip time limit per test 2 seconds memory limit per test 256 megabytes input ...

  7. H - Seek the Name, Seek the Fame

    The little cat is so famous, that many couples tramp over hill and dale to Byteland, and asked the l ...

  8. 通过JS的事件处理取得radio的值

    转自:http://blog.sina.com.cn/s/blog_50a1e17401017pik.html 提前知识准备: 在一个HTML文档中,每个元素都可以设置ID和NAME属性. 其中ID属 ...

  9. awr ash addm

    awr ash addm awr addm :基于快照的ash :单独,每秒采样 dbtime=db cpu + wait 柜员忙碌的时间=A做业务的时间+B做业务的时间等待时间=B等待A做业务的时间 ...

  10. NGINX之——配置HTTPS加密反向代理訪问–自签CA

    转载请注明出处:http://blog.csdn.net/l1028386804/article/details/46695495 出于公司内部訪问考虑,採用的CA是本机Openssl自签名生成的,因 ...