Spark 介绍(基于内存计算的大数据并行计算框架)

 Hadoop与Spark

行业广泛使用Hadoop来分析他们的数据集。原因是Hadoop框架基于一个简单的编程模型(MapReduce),它支持可扩展,灵活,容错和成本有效的计算解决方案。这里,主要关注的是在处理大型数据集时在查询之间的等待时间和运行程序的等待时间方面保持速度。
Spark由Apache Software Foundation引入,用于加速Hadoop计算软件过程。
对于一个普遍的信念,Spark不是Hadoop的修改版本,并不是真的依赖于Hadoop,因为它有自己的集群管理。 Hadoop只是实现Spark的方法之一。
Spark以两种方式使用Hadoop - 一个是存储,另一个是处理。由于Spark具有自己的集群管理计算,因此它仅使用Hadoop进行存储。

Apache Spark简介

Apache Spark是一种快速的集群计算技术,专为快速计算而设计。它基于Hadoop MapReduce,它扩展了MapReduce模型,以有效地将其用于更多类型的计算,包括交互式查询和流处理。 Spark的主要特性是它的内存中集群计算,提高了应用程序的处理速度。
Spark旨在涵盖各种工作负载,如批处理应用程序,迭代算法,交互式查询和流式处理。除了在相应系统中支持所有这些工作负载之外,它还减少了维护单独工具的管理负担。

Apache Spark的演变

Spark是Hadoop在2009年在加州大学伯克利分校的Matei Zaharia的AMPLab开发的子项目之一。它是在2010年根据BSD许可开放。它在2013年捐赠给Apache软件基金会,现在Apache Spark已经成为2014年2月的顶级Apache项目。

Apache Spark的特性

Apache Spark具有以下功能。

速度

Spark有助于在Hadoop集群中运行应用程序,在内存中速度提高100倍,在磁盘上运行时提高10倍。这可以通过减少对磁盘的读/写操作的数量来实现。它将中间处理数据存储在存储器中。

支持多种语言

Spark在Java,Scala或Python中提供了内置的API。因此,您可以使用不同的语言编写应用程序。 Spark提供了80个高级操作员进行交互式查询。

高级分析

Spark不仅支持“Map”和“reduce”。它还支持SQL查询,流数据,机器学习(ML)和图算法。

Spark基于Hadoop

下图显示了如何使用Hadoop组件构建Spark的三种方式。

Spark部署有三种方式,如下所述。
Standalone- Spark独立部署意味着Spark占据HDFS(Hadoop分布式文件系统)顶部的位置,并明确为HDFS分配空间。 这里,Spark和MapReduce将并行运行以覆盖集群上的所有spark作业。
Hadoop Yarn- Hadoop Yarn部署意味着,spark只需运行在Yarn上,无需任何预安装或根访问。 它有助于将Spark集成到Hadoop生态系统或Hadoop堆栈中。 它允许其他组件在堆栈顶部运行。
Spark in MapReduce (SIMR) - MapReduce中的Spark用于在独立部署之外启动spark job。 使用SIMR,用户可以启动Spark并使用其shell而无需任何管理访问。

Spark的组件

下图说明了Spark的不同组件。

Apache Spark Core

Spark Core是spark平台的基础通用执行引擎,所有其他功能都是基于。它在外部存储系统中提供内存计算和引用数据集。
Spark SQL
Spark SQL是Spark Core之上的一个组件,它引入了一个称为SchemaRDD的新数据抽象,它为结构化和半结构化数据提供支持。

Spark Streaming

Spark Streaming利用Spark Core的快速调度功能来执行流式分析。它以小批量获取数据,并对这些小批量的数据执行RDD(弹性分布式数据集)转换。

MLlib (Machine Learning Library)

MLlib是Spark之上的分布式机器学习框架,因为基于分布式内存的Spark架构。根据基准,它是由MLlib开发人员针对交替最小二乘法(ALS)实现完成的。 Spark MLlib是基于Hadoop磁盘的Apache Mahout版本的9倍(在Mahout获得了Spark接口之前)。
GraphX
GraphX是Spark上的一个分布式图形处理框架。它提供了一个用于表达图形计算的API,可以通过使用Pregel抽象API为用户定义的图形建模。它还为此抽象提供了一个优化的运行时。

 

Spark 介绍(基于内存计算的大数据并行计算框架)的更多相关文章

  1. 大数据并行计算框架Spark

    Spark2.1. http://dblab.xmu.edu.cn/blog/1689-2/ 0+入门:Spark的安装和使用(Python版) Spark2.1.0+入门:第一个Spark应用程序: ...

  2. 【转】Spark是基于内存的分布式计算引擎

    Spark是基于内存的分布式计算引擎,以处理的高效和稳定著称.然而在实际的应用开发过程中,开发者还是会遇到种种问题,其中一大类就是和性能相关.在本文中,笔者将结合自身实践,谈谈如何尽可能地提高应用程序 ...

  3. 如何基于Go搭建一个大数据平台

    如何基于Go搭建一个大数据平台 - Go中国 - CSDN博客 https://blog.csdn.net/ra681t58cjxsgckj31/article/details/78333775 01 ...

  4. 坐实大数据资源调度框架之王,Yarn为何这么牛

    摘要:Yarn的出现伴随着Hadoop的发展,使Hadoop从一个单一的大数据计算引擎,成为大数据的代名词. 本文分享自华为云社区<Yarn为何能坐实资源调度框架之王?>,作者: Java ...

  5. 《SPARK/TACHYON:基于内存的分布式存储系统》-史鸣飞(英特尔亚太研发有限公司大数据软件部工程师)

    史鸣飞:大家好,我是叫史鸣飞,来自英特尔公司,接下来我向大家介绍一下Tachyon.我事先想了解一下大家有没有听说过Tachyon,或者是对Tachyon有没有一些了解?对Spark呢? 首先做一个介 ...

  6. 基于InfluxDB+Grafana打造大数据监控利器--转

    这是一个大数据爆发的时代.面对信息的激流.多元化数据的涌现,我们在获取.存储.传输.理解.分析.应用.维护大数据时,无疑需要一种便捷的信息交流通道,以便快速.有效.准确地理解和驾驭这个过程.本文将通过 ...

  7. 基于MaxCompute的媒体大数据开放平台建设

    摘要:随着自媒体的发展,传统媒体面临着巨大的压力和挑战,新华智云运用大数据和人工智能技术,致力于为媒体行业赋能.通过媒体大数据开放平台,将媒体行业全网数据汇总起来,借助平台数据处理能力和算法能力,将有 ...

  8. 云计算OpenStack---云计算、大数据、人工智能(14)

    一.互联网行业及云计算 在互联网时代,技术是推动社会发展的驱动,云计算则是一个包罗万象的技术栈集合,通过网络提供IAAS.PAAS.SAAS等资源,涵盖从数据中心底层的硬件设置到最上层客户的应用.给我 ...

  9. 三:基于Storm的实时处理大数据的平台架构设计

    一:元数据管理器==>元数据管理器是系统平台的“大脑”,在任务调度中有着重要的作用[1]什么是元数据?--->中介数据,用于描述数据属性的数据.--->具体类型:描述数据结构,数据的 ...

随机推荐

  1. Shell脚本:向磁盘中批量写入数据

    一.关于本文 工作要做的监控系统需要监控磁盘空间的使用率并报警.在测试这个功能的时候需要模拟两个场景:一是磁盘空间不断增长超过设定的阈值时,需要触发报警机制:二是磁盘空间降落到低于报警阈值的时候,不再 ...

  2. XGB 调参基本方法

    - xgboost 基本方法和默认参数 - 实战经验中调参方法 - 基于实例具体分析 在训练过程中主要用到两个方法:xgboost.train()和xgboost.cv(). xgboost.trai ...

  3. Processing支持中文显示

    Processing 默认不支持中文,中文显示成框框,我使用的版本是:2.2.1,进行如下设置,并且重启processing就可以支持中文了: 可以看到中文了:

  4. Flex tree加三状态的Checkbox

    网上有下过其它人的实现的样例.可是样式不好改.还有就是不能初始化选中,还有三态效果那个半选中状态也是不清楚.所以自己依据Itemrender搞了一个,还凑合 效果如图:全选和半选状态,Checkbox ...

  5. Win7/Win8.1右键菜单技巧:应用程序任意加

    对于Win7.Win8.1老用户来说,日常使用中离不开双击各类第三方应用程序,尤其是常用的记事本.QQ聊天.关机.一键截图等程序,这时我们不妨将这些“右键菜单”,轻松实现一键开启QQ.截图或者关机等功 ...

  6. 设置Sysctl.conf用以提高Linux的性能(最完整的sysctl.conf优化方案)

    Sysctl是一个允许您改变正在运行中的Linux系统的接口.它包含一些 TCP/IP 堆栈和虚拟内存系统的高级选项, 这可以让有经验的管理员提高引人注目的系统性能.用sysctl可以读取设置超过五百 ...

  7. _ENV和_G

    5.1之前, 全局变量存储在_G这个table中, 这样的操作:a = 1 相当于:_G['a'] = 1 但在5.2之后, 引入了_ENV叫做环境,与_G全局变量表产生了一些混淆,需要从原理上做一个 ...

  8. Window 分布式 学习2----好文收藏

    概述 我们在上一篇Windows平台分布式架构实践 - 负载均衡中讨论了Windows平台下通过NLB(Network Load Balancer) 来实现网站的负载均衡,并且通过压力测试演示了它的效 ...

  9. spark读取hdfs数据本地性异常【转】

    在分布式计算中,为了提高计算速度,数据本地性是其中重要的一环. 不过有时候它同样也会带来一些问题. 一.问题描述 在分布式计算中,大多数情况下要做到移动计算而非移动数据,所以数据本地性尤其重要,因此我 ...

  10. mysql load本地文件失败,提示access denied

    mysql load本地文件失败,提示access denied 解决方式 直接谷歌到stackoverflow,解决方式如下 mysql -u myuser -p --local-infile so ...