[数据结构]迪杰斯特拉(Dijkstra)算法
基本思想
通过Dijkstra计算图G中的最短路径时,需要指定起点vs(即从顶点vs开始计算)。
此外,引进两个集合S和U。S的作用是记录已求出最短路径的顶点,而U则是记录还未求出最短路径的顶点(以及该顶点到起点vs的距离)。
初始时,S中只有起点vs;U中是除vs之外的顶点,并且U中顶点的路径是"起点vs到该顶点的路径"。然后,从U中找出路径最短的顶点,并将其加入到S中;接着,更新U中的顶点和顶点对应的路径。 然后,再从U中找出路径最短的顶点,并将其加入到S中;接着,更新U中的顶点和顶点对应的路径。 ... 重复该操作,直到遍历完所有顶点。
操作步骤
(1) 初始时,S只包含起点vs;U包含除vs外的其他顶点,且U中顶点的距离为"起点vs到该顶点的距离"[例如,U中顶点v的距离为(vs,v)的长度,然后vs和v不相邻,则v的距离为∞]。
(2) 从U中选出"距离最短的顶点k",并将顶点k加入到S中;同时,从U中移除顶点k。
(3) 更新U中各个顶点到起点vs的距离。之所以更新U中顶点的距离,是由于上一步中确定了k是求出最短路径的顶点,从而可以利用k来更新其它顶点的距离;例如,(vs,v)的距离可能大于(vs,k)+(k,v)的距离。
(4) 重复步骤(2)和(3),直到遍历完所有顶点。
接下来做一个简单例子求解:
package com.darrenchan.graph; import java.util.ArrayList;
import java.util.List; public class ShortestPathDijkstra {
/** 邻接矩阵 */
private int[][] matrix;
/** 表示正无穷 */
private int MAX_WEIGHT = Integer.MAX_VALUE;
/** 顶点集合 */
private String[] vertexes; /**
* 创建图
*/
private void createGraph(int index) {
matrix = new int[index][index];
vertexes = new String[index]; int[] v0 = { 0, 1, 5, MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT };
int[] v1 = { 1, 0, 3, 7, 5, MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT };
int[] v2 = { 5, 3, 0, MAX_WEIGHT, 1, 7, MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT };
int[] v3 = { MAX_WEIGHT, 7, MAX_WEIGHT, 0, 2, MAX_WEIGHT, 3, MAX_WEIGHT, MAX_WEIGHT };
int[] v4 = { MAX_WEIGHT, 5, 1, 2, 0, 3, 6, 9, MAX_WEIGHT };
int[] v5 = { MAX_WEIGHT, MAX_WEIGHT, 7, MAX_WEIGHT, 3, 0, MAX_WEIGHT, 5, MAX_WEIGHT };
int[] v6 = { MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT, 3, 6, MAX_WEIGHT, 0, 2, 7 };
int[] v7 = { MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT, 9, 5, 2, 0, 4 };
int[] v8 = { MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT, 7, 4, 0 };
matrix[0] = v0;
matrix[1] = v1;
matrix[2] = v2;
matrix[3] = v3;
matrix[4] = v4;
matrix[5] = v5;
matrix[6] = v6;
matrix[7] = v7;
matrix[8] = v8; vertexes[0] = "v0";
vertexes[1] = "v1";
vertexes[2] = "v2";
vertexes[3] = "v3";
vertexes[4] = "v4";
vertexes[5] = "v5";
vertexes[6] = "v6";
vertexes[7] = "v7";
vertexes[8] = "v8";
} /**
* Dijkstra最短路径。
*
* vs -- 起始顶点(start vertex) 即,统计图中"顶点vs"到其它各个顶点的最短路径。
*/
public void dijkstra(int vs) {
// flag[i]=true表示"顶点vs"到"顶点i"的最短路径已成功获取
boolean[] flag = new boolean[vertexes.length];
// U则是记录还未求出最短路径的顶点(以及该顶点到起点s的距离),与 flag配合使用,flag[i] == true 表示U中i顶点已被移除
int[] U = new int[vertexes.length];
// 前驱顶点数组,即,prev[i]的值是"顶点vs"到"顶点i"的最短路径所经历的全部顶点中,位于"顶点i"之前的那个顶点。
int[] prev = new int[vertexes.length];
// S的作用是记录已求出最短路径的顶点
String[] S = new String[vertexes.length]; // 步骤一:初始时,S中只有起点vs;U中是除vs之外的顶点,并且U中顶点的路径是"起点vs到该顶点的路径"。
for (int i = 0; i < vertexes.length; i++) {
flag[i] = false; // 顶点i的最短路径还没获取到。
U[i] = matrix[vs][i]; // 顶点i与顶点vs的初始距离为"顶点vs"到"顶点i"的权。也就是邻接矩阵vs行的数据。 prev[i] = 0; //顶点i的前驱顶点为0
} // 将vs从U中“移除”(U与flag配合使用)
flag[vs] = true;
U[vs] = 0;
// 将vs顶点加入S
S[0] = vertexes[vs];
// 步骤一结束 //步骤四:重复步骤二三,直到遍历完所有顶点。
// 遍历vertexes.length-1次;每次找出一个顶点的最短路径。
int k = 0;
for (int i = 1; i < vertexes.length; i++) {
// 步骤二:从U中找出路径最短的顶点,并将其加入到S中(如果vs顶点到x顶点还有更短的路径的话,那么
// 必然会有一个y顶点到vs顶点的路径比前者更短且没有加入S中
// 所以,U中路径最短顶点的路径就是该顶点的最短路径)
// 即,在未获取最短路径的顶点中,找到离vs最近的顶点(k)。
int min = MAX_WEIGHT;
for (int j = 0; j < vertexes.length; j++) {
if (flag[j] == false && U[j] < min) {
min = U[j];
k = j;
}
} //将k放入S中
S[i] = vertexes[k]; //步骤二结束 //步骤三:更新U中的顶点和顶点对应的路径
//标记"顶点k"为已经获取到最短路径(更新U中的顶点,即将k顶点对应的flag标记为true)
flag[k] = true; //修正当前最短路径和前驱顶点(更新U中剩余顶点对应的路径)
//即,当已经"顶点k的最短路径"之后,更新"未获取最短路径的顶点的最短路径和前驱顶点"。
for (int j = 0; j < vertexes.length; j++) {
//以k顶点所在位置连线其他顶点,判断其他顶点经过最短路径顶点k到达vs顶点是否小于目前的最短路径,是,更新入U,不是,不做处理
int tmp = (matrix[k][j] == MAX_WEIGHT ? MAX_WEIGHT : (min + matrix[k][j]));
if (flag[j] == false && (tmp < U[j])) {
U[j] = tmp;
//更新 j顶点的最短路径前驱顶点为k
prev[j] = k;
}
}
//步骤三结束
}
//步骤四结束 // 打印dijkstra最短路径的结果
System.out.println("起始顶点:" + vertexes[vs]);
for (int i = 0; i < vertexes.length; i++) {
System.out.print("最短路径(" + vertexes[vs] + "," + vertexes[i] + "):" + U[i] + " "); List<String> path = new ArrayList<>();
int j = i;
while (true) {
path.add(vertexes[j]); if (j == 0)
break; j = prev[j];
} for (int x = path.size()-1; x >= 0; x--) {
if (x == 0) {
System.out.println(path.get(x));
} else {
System.out.print(path.get(x) + "->");
}
} } System.out.println("顶点放入S中的顺序:");
for (int i = 0; i< vertexes.length; i++) { System.out.print(S[i]); if (i != vertexes.length-1)
System.out.print("-->");
} } public static void main(String[] args) {
ShortestPathDijkstra dij = new ShortestPathDijkstra();
dij.createGraph(9);
dij.dijkstra(0);
} }
参考:https://blog.csdn.net/CmdSmith/article/details/56839285
[数据结构]迪杰斯特拉(Dijkstra)算法的更多相关文章
- 迪杰斯特拉Dijkstra算法介绍
迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径. 它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止. 基本思想 通过Dijk ...
- JS实现最短路径之迪杰斯特拉(Dijkstra)算法
最短路径: 对于网图来说,最短路径是指两个顶点之间经过的边上权值和最少的路径,我们称第一个顶点是源点,最后一个顶点是终点 迪杰斯特拉 ( Dijkstra) 算法是并不是一下子就求出 了 Vo 到V8 ...
- 最短路径算法-迪杰斯特拉(Dijkstra)算法在c#中的实现和生产应用
迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径. 它的主要特点是以起始点为中心向外层层扩展(广度优先遍历思想),直到扩展到终点为止 贪心算法(Greedy ...
- 最短路径-迪杰斯特拉(dijkstra)算法及优化详解
简介: dijkstra算法解决图论中源点到任意一点的最短路径. 算法思想: 算法特点: dijkstra算法解决赋权有向图或者无向图的单源最短路径问题,算法最终得到一个最短路径树.该算法常用于路由算 ...
- 最短路径 - 迪杰斯特拉(Dijkstra)算法
对于网图来说,最短路径,是指两顶点之间经过的边上权值之和最少的路径,并且我们称路径上的第一个顶点为源点,最后一个顶点为终点.最短路径的算法主要有迪杰斯特拉(Dijkstra)算法和弗洛伊德(Floyd ...
- C# 迪杰斯特拉(Dijkstra)算法
Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止. 其基本思想是,设置顶点集合S并不断地作 ...
- 图的最短路径---迪杰斯特拉(Dijkstra)算法浅析
什么是最短路径 在网图和非网图中,最短路径的含义是不一样的.对于非网图没有边上的权值,所谓的最短路径,其实就是指两顶点之间经过的边数最少的路径. 对于网图,最短路径就是指两顶点之间经过的边上权值之和最 ...
- 单源最短路径算法:迪杰斯特拉 (Dijkstra) 算法(二)
一.基于邻接表的Dijkstra算法 如前一篇文章所述,在 Dijkstra 的算法中,维护了两组,一组包含已经包含在最短路径树中的顶点列表,另一组包含尚未包含的顶点.使用邻接表表示,可以使用 BFS ...
- 单源最短路径算法:迪杰斯特拉 (Dijkstra) 算法(一)
一.算法介绍 迪杰斯特拉算法(英语:Dijkstra's algorithm)由荷兰计算机科学家艾兹赫尔·迪杰斯特拉在1956年提出.迪杰斯特拉算法使用了广度优先搜索解决赋权有向图的单源最短路径问题. ...
- 迪杰斯特拉(Dijkstra)算法
# include <stdio.h> # define MAX_VERTEXES //最大顶点数 # define INFINITY ;//代表∞ typedef struct {/* ...
随机推荐
- MySQL数据库知识点整理 (持续更新中)
一.修改用户密码 格式(在命令行下输入):mysqladmin -u 用户名 -p旧密码 password 新密码 1. 给root添加密码ab12: mysqladmin -uroot -pass ...
- C#基础第六天-作业-利用面向对象的思想去实现名片
1.利用面向对象的思想去实现: (增加,修改,删除,查询,查询全部)需求:根据人名去(删除/查询).指定列:姓名,年龄,性别,爱好,电话. 本系列教程: C#基础总结之八面向对象知识点总结-继承与多态 ...
- activiti排他网关
/*启动流程实例*可以在启动流程时把所有流程变量设置好*/@Test public void startProcessInstance(){ //流程定义key String processDefin ...
- Android Webview SSL 自签名安全校验解决方案
服务器证书校验主要针对 WebView 的安全问题. 在 app 中需要通过 WebView 访问 url,因为服务器采用的自签名证书,而不是 ca 认证,使用 WebView 加载 url 的时候会 ...
- untiy 2d游戏平面直角坐标系的旋转应用
2d旋转的应用 1 :条件1 (已知) 创建一个平面直角坐标系 左上角为(0,0),能够把一个加入了UIPanel组件的物体(名字叫Father)移至UIRoot左上角 Y和Z轴都旋转180度.这样你 ...
- Android 如何在Eclipse 引入外部纯Java项目(不是打成Jar使用)
应用情景--如标题: 在Eclipse的 “Android启动项目”中引入“外部的纯Java项目”,能运行的只有是基于Android的测试代码才可以. 一直很纳闷,如果外部写好一个Java插件(例如服 ...
- Variance overview: Invariant, Covariant, Contravariant, 协变,逆变
- kvm 给虚机增加网卡
[root@666 ok]# virsh domiflist c03 Interface Type Source Model MAC --------------------------------- ...
- 菜鸟学Java(十八)——异常
每个学编程的人在编程的过程中都会遇到各种异常.那么当我们遇到异常的时候该怎么处理呢?针对不同的异常我们又该采取什么具体的处理方式呢?这些问题在我开始学编程的很长一段时间里我都不太清楚,还好随着不断的学 ...
- nodejs批量处理图片
var gm = require('gm');var imageMagick = gm.subClass({ imageMagick : true });var path = require('pat ...