长期以来,我每开个系列,只有兴趣写一篇,很难持之与恒。为了克服这个长久以来的性格弱点,以及梳理工作半年的积累。最近一个月会写两篇关于Mongo在地理大数据方面的实践和应用,一篇关于推荐系统的初期准备过程,一篇用户行为矩阵的可视化。希望能够立言为证,自我监督。

1.驱动准备

言归正传,前文MongoDB集群部署完毕之后,CRUD就是主要需求。NoSQL与普通关系数据库不同的是,避免采用ORM框架对数据库做操作,这样会带来明显的性能下降[1]。使用原生的Driver是一个较为合理的选择,Mongo支持的语言非常多,包括JS,Java,C,C++,Python,Scala等[2]。

如果是单纯的MongoDB项目,我们会用NodeJS Driver,方便快捷,示例规范,值得推荐。在本文我使用Java Driver,主要是集成Hadoop工程方便。同时还会用到Mongo Hadoop Adapter 可以选择到Github 下载源码编译,或者直接根据自己Hadoop集群版本选择下载Jar包,添加到Hadoop安装目录的lib文件夹下[3]。但是在不少公有云平台上,普通用户是没有修改Hadoop系统的权限,无法添加Jar包,所以在本文的示例代码中,采用分布式缓存的方法添加这两个Jar包。

2.实现原理与过程

其实Hadoop和MongoDB的集成,很大程度上是将Mongo作为Hadoop的输入和输出源,而Mongo Hadoop Adapter也是主要实现了BSONWritable,MongoInputformat等这些类,也就是说需要自定义Hadoop的序列化类以及输入输出格式。

2.1 Hadoop序列化与反序列化

序列化(serialization)将结构化对象转化为二进制字节流,以便网络传输和写入磁盘。反序列化(deserialization)则是它的逆过程,将字节流转化为结构化对象。分布式系统通常在进程通讯和持久化时候会使用序列化。Hadoop系统节点进程通信使用RPC,该协议存活时间非常短,因此需要其序列化格式具备以下特点:紧凑、快速、可扩展等。Hadoop提供了Writable接口,它定义了对数据的IO流,即需要实现readFields 和 Write两个方法[4]。

2.2 Mongo Adapter的源码实现

Mongo Hadoop Adater所实现的BSONWritable等类,源码实现体现了上述的规范:

//输出
public void write( DataOutput out ) throws IOException{
BSONEncoder enc = new BasicBSONEncoder();
BasicOutputBuffer buf = new BasicOutputBuffer();
enc.set( buf );
…………
}
//输入
public void readFields( DataInput in ) throws IOException{
BSONDecoder dec = new BasicBSONDecoder();
BSONCallback cb = new BasicBSONCallback();
// Read the BSON length from the start of the record
//字节流长度
byte[] l = new byte[4];
try {
in.readFully( l );
…………
byte[] data = new byte[dataLen + 4];
System.arraycopy( l, 0, data, 0, 4 );
in.readFully( data, 4, dataLen - 4 );
dec.decode( data, cb );
_doc = (BSONObject) cb.get();
………………
}

因此我们在编写MapReduce程序的时候可以传递BsonWritable的key,value键值对,而Mongo构建于Bson之上,也就是说可以将MongoDB视为HDFS同性质的存储节点即可。

3. 代码实现

在Mongo-Hadoop网站有数个例子,但是讲得不够详细,本文主要对它的金矿产量的例子做一个补充。完整的Hadoop项目一般包括Mapper,Reduceer,Job三个Java Class,以及一个一个配置文件(configuration.xml)来定义项目的输入输出等。Mongo-Hadoop项目会多一个mongo-defaults.xml,当然可以将两者融合起来。

3.1  数据准备

从github中下载源码包,它会包含examples/treasury_yield/src/main/resources/yield_historical_in.json文件,将该json文件上传到Mongo所在的服务器,使用以下命令将它导入Mongo的testmr数据库中的example collection中。

mongoimport --host 127.0.0.1 --port  -d testmr -c example --file ./yield_historical_in.json

查看一下数据结构

use testmr
db.example.find().limit().pretty()

如下:

{
"_id": ISODate("1990-01-25T19:00:00-0500"),
"dayOfWeek": "FRIDAY", "bc3Year": 8.38,
"bc10Year": 8.49,

}

3.2  Mapper和Reducer还有Job以及mongo-defaults.xml

Mapper是从Mongo中读取BSONObject

public class MongoTestMapper extends Mapper<Object,BSONObject, IntWritable, DoubleWritable>

以及处理读过来的<key,value>键值对,并发到Reducer中汇总计算。注意value的类型。

public void map(final Object pkey, final BSONObject pvalue,final Context context)
{
final int year = ((Date)pvalue.get("_id")).getYear()+1990;
double bdyear = ((Number)pvalue.get("bc10Year")).doubleValue();
try {
context.write( new IntWritable( year ), new DoubleWritable( bdyear ));
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}

Reducer会接受Mapper传过来的键值对

public class MongoTestReducer extends Reducer<IntWritable,DoubleWritable,IntWritable,BSONWritable>

进行计算并将结果写入MongoDB.请注意输出的Value的类型是BSONWritable.

public void reduce( final IntWritable pKey,
final Iterable<DoubleWritable> pValues,
final Context pContext ) throws IOException, InterruptedException{
int count = 0;
double sum = 0.0;
for ( final DoubleWritable value : pValues ){
sum += value.get();
count++;
} final double avg = sum / count; BasicBSONObject out = new BasicBSONObject();
out.put("avg", avg);
pContext.write(pKey, new BSONWritable(out));
}

Job作为MapReudce主类,主要使用DistributedCache分布式缓存来添加驱动包,并定义了任务的输入配置等。如下所示:

//Using Distribute Cache,call it before job define.
DistributedCache.createSymlink(conf);
//………………
//Using DistributedCache to add Driver Jar File
DistributedCache.addFileToClassPath(new Path("/user/amap/data/mongo/mongo-2.10.1.jar"), conf);
DistributedCache.addFileToClassPath(new Path("/user/amap/data/mongo/mongo-hadoop-core_cdh4.3.0-1.1.0.jar"), conf); // job conf
Job job = new Job(conf,"VentLam:Mongo-Test-Job");

mongo-defaults.xml 配置文件中定义了非常多的参数,我们只需要修改输入输出URI

   <!-- If you are reading from mongo, the URI -->
<name>mongo.input.uri</name>
<value>mongodb://127.0.0.1/testmr.example</value>
</property>
<property>
<!-- If you are writing to mongo, the URI -->
<name>mongo.output.uri</name>
<value>mongodb://127.0.0.1/testmr.mongotest</value>
</property>
<property>

将整个java项目打包为名为mongotest的jar包,上传到Hadoop集群,执行命令:

hadoop jar mongotest.jar org.ventlam.MongoTestJob

以后会将我的博客涉及到源码都发布在https://github.com/ventlam/BlogDemo 中,这篇文章对应的是mongohadoop文件夹。

4.参考文献

[1] What the overhead of Java ORM for MongoDB

http://stackoverflow.com/questions/10600162/what-the-overhead-of-java-orm-for-mongodb

[2] MongoDB Drivers and Client Libraries

http://docs.mongodb.org/ecosystem/drivers/

[3]Getting Started with Hadoop

http://docs.mongodb.org/ecosystem/tutorial/getting-started-with-hadoop/

[4] Interface Writable    http://hadoop.apache.org/docs/stable/api/

本作品由VentLam创作,采用知识共享署名-非商业性使用-相同方式共享 2.5 中国大陆许可协议进行许可。

MongoDB集群与LBS应用系列(二)--与Hadoop集成的更多相关文章

  1. MongoDB集群与LBS应用系列(一)

    MongoDB集群与LBS应用系列(一) 1. 概念 MongoDB作为著名的NoSQL,早已非常流行.它的地理应用也非常成熟,被foursquare用于生产环境也已经多时.本文主要记录今年6月份的一 ...

  2. MongoDB 集群-主从复制(一主二从)

    MongoDB 集群-主从复制(一主二从) 官方文档 https://docs.mongodb.com/manual/tutorial/deploy-replica-set/ https://docs ...

  3. [转]搭建高可用mongodb集群(二)—— 副本集

    在上一篇文章<搭建高可用MongoDB集群(一)——配置MongoDB> 提到了几个问题还没有解决. 主节点挂了能否自动切换连接?目前需要手工切换. 主节点的读写压力过大如何解决? 从节点 ...

  4. 搭建高可用mongodb集群(二)—— 副本集

    在上一篇文章<搭建高可用MongoDB集群(一)——配置MongoDB> 提到了几个问题还没有解决. 主节点挂了能否自动切换连接?目前需要手工切换. 主节点的读写压力过大如何解决? 从节点 ...

  5. 搭建高可用mongodb集群(二)—— 副本集

    在上一篇文章<搭建高可用MongoDB集群(一)--配置MongoDB> 提到了几个问题还没有解决. 主节点挂了能否自动切换连接?目前需要手工切换. 主节点的读写压力过大如何解决? 从节点 ...

  6. mongodb系列~mongodb集群介绍与管理

    mongodb 集群维护1 简介    谈谈mongodb的集群架构2 常用的维护命令   1 查看状态 sh.status()         1 version        2 shards: ...

  7. 搭建高可用mongodb集群—— 分片

    从节点每个上面的数据都是对数据库全量拷贝,从节点压力会不会过大? 数据压力大到机器支撑不了的时候能否做到自动扩展? 在系统早期,数据量还小的时候不会引起太大的问题,但是随着数据量持续增多,后续迟早会出 ...

  8. 搭建高可用mongodb集群(四)—— 分片(经典)

    转自:http://www.lanceyan.com/tech/arch/mongodb_shard1.html 按照上一节中<搭建高可用mongodb集群(三)-- 深入副本集>搭建后还 ...

  9. [转]搭建高可用mongodb集群(四)—— 分片

    按照上一节中<搭建高可用mongodb集群(三)—— 深入副本集>搭建后还有两个问题没有解决: 从节点每个上面的数据都是对数据库全量拷贝,从节点压力会不会过大? 数据压力大到机器支撑不了的 ...

随机推荐

  1. 王垠:完全用Linux工作 - imsoft.cnblogs

    完全用Linux工作,抛弃windows 我已经半年没有使用 Windows 的方式工作了.Linux 高效的完成了我所有的工作. GNU/Linux 不是每个人都想用的.如果你只需要处理一般的事务, ...

  2. cocoapods 安装过程及常见问题

    1.可以参考这个网页的教程:http://code4app.com/article/cocoapods-install-usage 2.按照以下步骤进行安装: 1.配置rugy静态环境 gem sou ...

  3. 20155229 2016-2017-2 《Java程序设计》第五周学习总结

    20155229 2016-2017-2 <Java程序设计>第五周学习总结 教材学习内容总结 第八章: Java中所有错误都会被打包为对象. 设计错误对象都继承自java.lang.Th ...

  4. wpf 客户端【JDAgent桌面助手】开发详解(三) 瀑布流效果实现与UI虚拟化优化大数据显示

    目录区域: 业余开发的wpf 客户端终于完工了..晒晒截图 wpf 客户端[JDAgent桌面助手]开发详解-开篇 wpf 客户端[JDAgent桌面助手]详解(一)主窗口 圆形菜单... wpf 客 ...

  5. day8 python学习 集合 深浅拷贝

    1.内存地址: 字符串在20位以内,没有空格,没有特殊字符的情况下,同样的字符串内存地址是一样的 2.元组中:在只有一个值的时在后边加逗号和没有逗号的区别 t1=(1) 不加逗号这个值是什么类型就打印 ...

  6. SQL Server获取指定行的数据

    SQL Server获取指定行(如第二行)的数据   --SQL Server获取指定行(如第二行)的数据-- --法一(对象法)-- select * from ( select * , numbe ...

  7. A glance at C# vNext

    Contents Introduction Background A list of features Primary constructor Read only auto-properties St ...

  8. windows10密钥激活方法

    软件设计开发文档模板(国家标准)v1.1.rar 以上就是今天所分享Win10系统各个版本免费激活的windows密钥,希望win10专业版密钥可以帮助大家. 专业版:W269N-WFGWX-YVC9 ...

  9. ThinkPHP 更新 5.0.23 和 5.1.31

    ThinkPHP 更新 5.0.23 和 5.1.31 FastAdmin 也跟着更新. V1.0.0.20181210_beta 修复 ThinkPHP5.0发布了一个重要安全更新,强烈建议更新 修 ...

  10. PHP写的手机端网站,可以打包成app吗,怎么打包?

    8:13:36 沐歌-重庆 2018/1/19 8:13:36 PHP写的手机端网站,可以打包成app吗,怎么打包 风太大-淮安 2018/1/19 8:14:58 变色龙 沐歌-重庆 一般用什么打包 ...