Semaphore是非常有用的一个组件,它相当于是一个并发控制器,是用于管理信号量的。构造的时候传入可供管理的信号量的数值,这个数值就是控制并发数量的,就是同时能几个线程访问。我们需要控制并发的代码,执行前先通过acquire方法获取信号,执行后通过release归还信号 。每次acquire返回成功后,Semaphore可用的信号量就会减少一个,如果没有可用的信号,acquire调用就会阻塞,等待有release调用释放信号后,acquire才会得到信号并返回。

ps:注意这里信号量acquire方法和release方法是可以有参数的,表示获取/返还的信号量个数,如果不指定就是默认单个释放

Semaphore实现的功能就类似厕所有5个坑,假如有10个人要上厕所,那么同时只能有多少个人去上厕所呢?同时只能有5个人能够占用,当5个人中 的任何一个人让开后,其中等待的另外5个人中又有一个人可以占用了。另外等待的5个人中可以是随机获得优先机会,也可以是按照先来后到的顺序获得机会,这取决于构造Semaphore对象时传入的参数选项。单个信号量的Semaphore对象可以实现互斥锁的功能,并且可以是由一个线程获得了“锁”,再由另一个线程释放“锁”,这可应用于死锁恢复的一些场合。Semaphore在实现这种排队机制的时候很优秀,代码简洁

Semaphore维护了当前访问的个数,提供同步机制,控制同时访问的个数。在数据结构中链表可以保存“无限”的节点,用Semaphore可以实现有限大小的链表。另外重入锁 ReentrantLock 也可以实现该功能,但实现上要复杂些。


ReentrantLock 实现的生产/消费者一对一情况下 ,对比Semaphore 代码更复杂,但是在多个生产/消费的况,ReentrantLock虽然代码比较复杂,但是更高效 

Semaphore分为单值和多值两种:

1、单值的Semaphore管理的信号量只有1个,该信号量只能被1个,只能被一个线程所获得,意味着并发的代码只能被一个线程运行,这就相当于是一个互斥锁了

2、多值的Semaphore管理的信号量多余1个,主要用于控制并发数

看一下代码例子:

public static void main(String[] args)
{
final Semaphore semaphore = new Semaphore(5); Runnable runnable = new Runnable()
{
public void run()
{
try
{
semaphore.acquire();
         System.out.println(Thread.currentThread().getName() + "获得了信号量,时间为" + System.currentTimeMillis());
Thread.sleep(2000);
         System.out.println(Thread.currentThread().getName() + "释放了信号量,时间为" + System.currentTimeMillis());
}
catch (InterruptedException e)
{
e.printStackTrace();
}
finally
{
semaphore.release();
}
}
}; Thread[] threads = new Thread[10];
for (int i = 0; i < threads.length; i++)
threads[i] = new Thread(runnable);
for (int i = 0; i < threads.length; i++)
threads[i].start();
}

看一下运行结果:

 1 Thread-1获得了信号量,时间为1444557040464
2 Thread-2获得了信号量,时间为1444557040465
3 Thread-0获得了信号量,时间为1444557040464
4 Thread-3获得了信号量,时间为1444557040465
5 Thread-4获得了信号量,时间为1444557040465
6 Thread-2释放了信号量,时间为1444557042466
7 Thread-4释放了信号量,时间为1444557042466
8 Thread-0释放了信号量,时间为1444557042466
9 Thread-1释放了信号量,时间为1444557042466
10 Thread-3释放了信号量,时间为1444557042466
11 Thread-9获得了信号量,时间为1444557042467
12 Thread-7获得了信号量,时间为1444557042466
13 Thread-6获得了信号量,时间为1444557042466
14 Thread-5获得了信号量,时间为1444557042466
15 Thread-8获得了信号量,时间为1444557042467
16 Thread-9释放了信号量,时间为1444557044467
17 Thread-6释放了信号量,时间为1444557044467
18 Thread-7释放了信号量,时间为1444557044467
19 Thread-5释放了信号量,时间为1444557044468
20 Thread-8释放了信号量,时间为1444557044468

前10行为一部分,运行的线程是1 2 0 3 4,看到时间差也都是代码约定的2秒;后10行为一部分,运行的线程是9 7 6 5 8,时间差也都是约定的2秒,这就体现出了Semaphore的作用了,这里由于是在中间使用sleep ,所以看起来是有序的,必须释放5个才能获取,其实不然,是一个释放,信号量发现还有空余的就会立刻分给下一个等待的线程

这种通过Semaphore控制并发并发数的方式和通过控制线程数来控制并发数的方式相比,粒度更小,因为Semaphore可以通过acquire方法和release方法来控制代码块的并发数。

最后注意两点:

1、Semaphore可以指定公平锁还是非公平锁

2、acquire方法和release方法是可以有参数的,表示获取/返还的信号量个数


java 多线程 28 : 多线程组件之 Semaphore 信号量的更多相关文章

  1. Java多线程系列--“JUC锁”11之 Semaphore信号量的原理和示例

    概要 本章,我们对JUC包中的信号量Semaphore进行学习.内容包括:Semaphore简介Semaphore数据结构Semaphore源码分析(基于JDK1.7.0_40)Semaphore示例 ...

  2. java架构之路(多线程)JUC并发编程之Semaphore信号量、CountDownLatch、CyclicBarrier栅栏、Executors线程池

    上期回顾: 上次博客我们主要说了我们juc并发包下面的ReetrantLock的一些简单使用和底层的原理,是如何实现公平锁.非公平锁的.内部的双向链表到底是什么意思,prev和next到底是什么,为什 ...

  3. 多线程锁:Mutex互斥体,Semaphore信号量,Monitor监视器,lock,原子操作InterLocked

    Mutex类 “mutex”是术语“互相排斥(mutually exclusive)”的简写形式,也就是互斥量.互斥量跟临界区中提到的Monitor很相似,只有拥有互斥对象的线程才具有访问资源的权限, ...

  4. Java多线程同步工具类之Semaphore

    Semaphore信号量通常做为控制线程并发个数的工具来使用,它可以用来限制同时并发访问资源的线程个数. 一.Semaphore使用 下面我们通过一个简单的例子来看下Semaphore的具体使用,我们 ...

  5. java并发与多线程面试题与问题集合

    http://www.importnew.com/12773.html     https://blog.csdn.net/u011163372/article/details/73995897    ...

  6. [Java][读书笔记]多线程编程

    前言:最近复习java,发现一本很好的资料,<J​a​v​a​2​参​考​大​全​ ​(​第​五​版​)​> ​ ​H​e​r​b​e​r​t​.Schildt.书比较老了,06年的,一些 ...

  7. Java中使用多线程、curl及代理IP模拟post提交和get访问

    Java中使用多线程.curl及代理IP模拟post提交和get访问 菜鸟,多线程好玩就写着玩,大神可以路过指教,小弟在这受教,谢谢! 更多分享请关注微信公众号:lvxing1788 ~~~~~~ 分 ...

  8. Java中的 多线程编程

    Java 中的多线程编程 一.多线程的优缺点 多线程的优点: 1)资源利用率更好2)程序设计在某些情况下更简单3)程序响应更快 多线程的代价: 1)设计更复杂虽然有一些多线程应用程序比单线程的应用程序 ...

  9. Java中使用多线程、curl及代理IP模拟post提交和get訪问

    Java中使用多线程.curl及代理IP模拟post提交和get訪问 菜鸟,多线程好玩就写着玩.大神能够路过不吝赐教.小弟在这受教.谢谢! 很多其它分享请关注微信公众号:lvxing1788 ~~~~ ...

随机推荐

  1. 高性能Web服务之lnmp架构应用

    传统上基于进程或线程模型架构的web服务通过每进程或每线程处理并发连接请求,这势必会在网络和I/O操作时产生阻塞,其另一个必然结果则是对内存或CPU的利用率低下.生成一个新的进程/线程需要事先备好其运 ...

  2. 进阶之路(中级篇) - 018 基于arduino的简易版智能衣架

    一.    设备及要求 目的:制作一个可以自动根据事实的天气的状况进行对衣架上的衣服进行晾晒. 基础装置:可伸缩的晾衣架. 开发环境:Arduino1. 8.1 主控板:Arduino UNO 动力装 ...

  3. Firefox 网络调试工具

    1.Firefox 简介 Firefox 官网下载地址 Firefox 其它下载地址 Firefox 58.0.2 for Mac,密码:346y. Firefox 36.0.4 for Mac,密码 ...

  4. int和Integer之间的区别和联系

          在工作中使用==埋下的坑这篇博文中,我们看到当使用基本类型的时候==是完全没有问题的,部分或者混合使用基本类型和装箱基本类型的时候,就可能出现问题了,那么我们可能会想基本类型和装箱基本类型 ...

  5. Oracle VPD策略示例

    1.未创建前使用oe用户登录查询: SQL> select * from orders; ORDER_ID ORDER_DATE ORDER_MO CUSTOMER_ID ORDER_STATU ...

  6. Android登录client,验证码的获取,网页数据抓取与解析,HttpWatch基本使用

    大家好,我是M1ko.在互联网时代的今天,假设一个App不接入互联网.那么这个App一定不会有长时间的生命周期,因此Android网络编程是每个Android开发人员必备的技能.博主是在校大学生,自学 ...

  7. linux 调用shell脚本传参

    例子: boolean execResult = true;        BufferedReader br = null;        try        {            //lin ...

  8. python os.chdir() 用法

    概述 os.chdir() 方法用于改变当前工作目录到指定的路径. 语法 chdir()方法语法格式如下: os.chdir(path) 参数 path -- 要切换到的新路径. 返回值 如果允许访问 ...

  9. python appium 封装获取toast方法

    获取toast text封装,传入toast 部分文本,返回全部文本 def get_toast_text(self,text): try: toast_loc = (By.XPATH, " ...

  10. elk 的报错和优化

    参数调整 elasticsearch.yml配置文件里面,调整http.max_content_length: 500mb 这个默认就100m 建议调大 之前有过报错 #如果队列满了logstash就 ...