这次准备做一下pandas在画图中的应用,要做数据分析的话这个更为实用,本次要用到的数据是pthon机器学习库sklearn中一组叫iris花的数据,里面组要有4个特征,分别是萼片长度、萼片宽度、花瓣长度、花瓣宽度,目标值是3种不同类型的花。

机器学习的时候在学习好这四个特征后就可以用来预测花的类型了,而图像化分析这些数据就是机器学习中很关键的步骤,接下来我们开始,先导入数据:

import pandas as pd
from sklearn import datasets
from sklearn import preprocessing data = datasets.load_iris()#载入iris数据
# data = preprocessing.scale(boston.data)#正则化数据
pd.set_option('display.max_columns', None)
d1_x = pd.DataFrame(data.data, columns=data.feature_names)
d1_y = pd.Series(data.target)
print(d1_x.head())
print(d1_y.head())

部分数据展示如下,可以看出有4个不同特征,3种不同的话目标值分别是0,1,2

   sepal length (cm)  sepal width (cm)  petal length (cm)  petal width (cm)
0 5.1 3.5 1.4 0.2
1 4.9 3.0 1.4 0.2
2 4.7 3.2 1.3 0.2
3 4.6 3.1 1.5 0.2
4 5.0 3.6 1.4 0.2
0 0
1 0
2 0
3 0
4 0
dtype: int32

很多时间图像更能直观反映出数据,接下来开始正题:

from matplotlib import pyplot as plt
import pandas as pd
from sklearn import datasets
from sklearn import preprocessing data = datasets.load_iris()#载入iris数据
# data = preprocessing.scale(boston.data)#正则化数据
pd.set_option('display.max_columns', None)
d1_x = pd.DataFrame(data.data, columns=data.feature_names)
d1_y = pd.Series(data.target)
print(d1_x.head())
print(d1_y.head()) d1_x.plot(linestyle='--', marker='.', alpha=0.5) #DataFrame的画图方式,依赖于matplotlib
d1_y.plot(linestyle='-', linewidth=1.5, alpha=0.5, color='b', label='type')
plt.legend()
plt.show()

是不是很简单,和之前plt.plot()的画图几乎一样的,结果如下:

从上图中,比较直观的我可以看出,sepal width与花种类关系不大,其它三个特征则关系密切,根据这个图像分析从而可以进行下一步。

接下来,看看其它类型的图,由于这里数据不太适合条形图,那自己造一点数据吧:

from matplotlib import pyplot as plt
import pandas as pd
import numpy as np d1 = pd.DataFrame(np.random.rand(5, 3), columns=['A', 'B', 'C']) # 方法一
d1.plot.bar(cmap='summer')
# 方法二
#d1.plot(kind='bar', colormap='cool')
plt.show()

画条形图有两中方式,看代码,是不是很简单,其它图形就不全部都写出来了,方式都差不多,今天就到这里了。

机器学习-数据可视化神器matplotlib学习之路(五)的更多相关文章

  1. 机器学习-数据可视化神器matplotlib学习之路(三)

    之前学习了一些通用的画图方法和技巧,这次就学一下其它各种不同类型的图.好了先从散点图开始,上代码: from matplotlib import pyplot as plt import numpy ...

  2. 机器学习-数据可视化神器matplotlib学习之路(二)

    之前学习了matplotlib的一些基本画图方法(查看上一节),这次主要是学习在图中加一些文字和其其它有趣的东西. 先来个最简单的图 from matplotlib import pyplot as ...

  3. 机器学习-数据可视化神器matplotlib学习之路(一)

    直接上代码吧,说明写在备注就好了,这次主要学习一下基本的画图方法和常用的图例图标等 from matplotlib import pyplot as plt import numpy as np #这 ...

  4. 机器学习-数据可视化神器matplotlib学习之路(四)

    今天画一下3D图像,首先的另外引用一个包 from mpl_toolkits.mplot3d import Axes3D,接下来画一个球体,首先来看看球体的参数方程吧 (0≤θ≤2π,0≤φ≤π) 然 ...

  5. Python数据可视化——使用Matplotlib创建散点图

    Python数据可视化——使用Matplotlib创建散点图 2017-12-27 作者:淡水化合物 Matplotlib简述: Matplotlib是一个用于创建出高质量图表的桌面绘图包(主要是2D ...

  6. 学机器学习,不会数据分析怎么行——数据可视化分析(matplotlib)

    前言 前面两篇文章介绍了 python 中两大模块 pandas 和 numpy 的一些基本使用方法,然而,仅仅会处理数据还是不够的,我们需要学会怎么分析,毫无疑问,利用图表对数据进行分析是最容易的, ...

  7. python 数据可视化(matplotlib)

    matpotlib 官网 :https://matplotlib.org/index.html matplotlib 可视化示例:https://matplotlib.org/gallery/inde ...

  8. 绘图和数据可视化工具包——matplotlib

    一.Matplotlib介绍 Matplotlib是一个强大的Python**绘图**和**数据可视化**的工具包. # 安装方法 pip install matplotlib # 引用方法 impo ...

  9. Python数据可视化库-Matplotlib(一)

    今天我们来学习一下python的数据可视化库,Matplotlib,是一个Python的2D绘图库 通过这个库,开发者可以仅需要几行代码,便可以生成绘图,直方图,功率图,条形图,错误图,散点图等等 废 ...

随机推荐

  1. Git:pull --rebase 和 merge --no-ff

    首先是吐嘈 如果你正在 code review,看到上图(下文将称之为:提交线图)之后,特别是像我这样有某种洁癖的人,是否感觉特别难受?如果是的话,请看下文吧 :) 为什么 Git 作为分布式版本控制 ...

  2. 杀死正在运行的进程: linux

    1:杀死正在运行的进程:使用ps -aux|grep labor   查出进程PID 2:使用kill  PID  将进程杀死.

  3. Kylin构建cube时状态一直处于pending

    在安装好kylin之后我直接去访问web监控页面发现能够进去,也没有去看日志.然后在运行官方带的例子去bulid cube时去发现状态一直是pending而不是runing.这个时候才去查看日志: 2 ...

  4. chrome正受到自动测试软件的控制-----web自动化测试如何去掉这段提示

    本文为原创文章 在web自动化测试的时候,特别是在用chrome浏览器的时候经常会出现 “chrome正受到自动测试软件的控制”  这样的一句提示, 这是因为安装chrome浏览器的时候没有设置允许调 ...

  5. webpack相关

    原文  https://segmentfault.com/a/1190000005089993 Webpack是目前基于React和Redux开发的应用的主要打包工具.我想使用Angular 2或其他 ...

  6. 把 ElasticSearch 当成是 NoSQL 数据库

    Elasticsearch 可以被当成一个 “NoSQL”-数据库来使用么? NoSQL 意味着在不同的环境下存在不同的东西, 而erestingly 它并不是真的跟 SQL 有啥关系. 我们开始只会 ...

  7. .apk等常用文件下载出现如果应下载文件,请添加 iis MIME 映射。

    在下载.apk文件时出现错误. HTTP 错误 404.3 - Not Found 由于扩展配置问题而无法提供您请求的页面.如果该页面是脚本,请添加处理程序.如果应下载文件,请添加 MIME 映射. ...

  8. 我的sublime 插件配置

    一个插件就是一个软件 ,这就是sublime的理念 . 1.Packag control 给sublime配置插件当然少不了Package control ,首先安装 Package control ...

  9. uva10167

    /* 暴力 过了 要使得两半的 樱桃数目相等 去试每一个斜率 还好他这里要的是 A.B 都为正整数 这样范围就锁定在200*100 个点范围内 */ #include <cstdio> # ...

  10. uva 13598

    /* 题目的大意是 给你 N 学生 然后 给前 K个学生编号了 给定的 号码 , 然后你按照 使得接下来学生 学号尽量小的 方法 从第 K+1个学生开始编号 每个号码 自然只能用一次, 解答 : 先将 ...