POJ 3678 Katu Puzzle (经典2-Sat)
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 6553 | Accepted: 2401 |
Description
Katu Puzzle is presented as a directed graph G(V, E) with each edge e(a, b) labeled by a boolean operator op (one of AND, OR, XOR) and an integer c (0 ≤ c ≤ 1). One Katu is solvable if one can find each vertex Vi a value Xi (0 ≤ Xi ≤ 1) such that for each edge e(a, b) labeled by op and c, the following formula holds:
Xa op Xb = c
The calculating rules are:
|
|
|
Given a Katu Puzzle, your task is to determine whether it is solvable.
Input
The first line contains two integers N (1 ≤ N ≤ 1000) and M,(0 ≤ M ≤ 1,000,000) indicating the number of vertices and edges.
The following M lines contain three integers a (0 ≤ a < N), b(0 ≤ b < N), c and an operator op each, describing the edges.
Output
Output a line containing "YES" or "NO".
Sample Input
4 4
0 1 1 AND
1 2 1 OR
3 2 0 AND
3 0 0 XOR
Sample Output
YES
Hint
Source
经典2-SAT问题
构图时,根据条件找可以确定关系的形如A->B这样的关系式
i表示i取1,~i表示i取0
i AND j =1 ~i->i, ~j->j, i->j, j->i,后面两个关系式构成一个环,i,j在同一强连通分量中,可以免去
i AND j = 0 i->~i, j->~j 而~i推不出j为0还是1
i OR j =1 ~i->j, ~j->i
i OR J =0 i->~i, j->~j, ~j->~i, ~i->~j 又有环,可以省略
i XOR j =1 i->~j, j->~i, ~i->j, ~j->i
i XOR j =0 i->j, j->i, ~i->~j, ~j->~i 又构成两个环
#include<iostream>
#include<cstdio>
#include<cstring> using namespace std; const int VM=;
const int EM=;
const int INF=0x3f3f3f3f; struct Edge{
int to,nxt;
}edge[EM<<]; int n,m,cnt,dep,top,atype,head[VM];
int dfn[VM],low[VM],vis[VM],belong[VM];
int stack[VM]; void Init(){
cnt=, atype=, dep=, top=;
memset(head,-,sizeof(head));
memset(vis,,sizeof(vis));
memset(low,,sizeof(low));
memset(dfn,,sizeof(dfn));
memset(belong,,sizeof(belong));
} void addedge(int cu,int cv){
edge[cnt].to=cv; edge[cnt].nxt=head[cu]; head[cu]=cnt++;
} void Tarjan(int u){
dfn[u]=low[u]=++dep;
stack[top++]=u;
vis[u]=;
for(int i=head[u];i!=-;i=edge[i].nxt){
int v=edge[i].to;
if(!dfn[v]){
Tarjan(v);
low[u]=min(low[u],low[v]);
}else if(vis[v])
low[u]=min(low[u],dfn[v]);
}
int j;
if(dfn[u]==low[u]){
atype++;
do{
j=stack[--top];
belong[j]=atype;
vis[j]=;
}while(u!=j);
}
} int main(){ //freopen("input.txt","r",stdin); while(~scanf("%d%d",&n,&m)){
Init();
char op[];
int i,j,c;
while(m--){
scanf("%d%d%d%s",&i,&j,&c,op);
if(op[]=='A'){
if(c){
addedge(*i+,*i);
addedge(*j+,*j);
//addedge(2*i,2*j);//2*i和2*j在同一个环中,肯定满足
//addedge(2*j,2*i);
}else{
addedge(*i,*j+);
addedge(*j,*i+);
}
}else if(op[]=='O'){
if(c){
addedge(*i+,*j);
addedge(*j+,*i);
}else{
addedge(*i,*i+);
addedge(*j,*j+);
//addedge(2*i+1,2*j+1);//同上
//addedge(2*j+1,2*i+1);
}
}else{
if(c){
addedge(*i,*j+);
addedge(*i+,*j);
addedge(*j,*i+);
addedge(*j+,*i);
}else{
//addedge(2*i,2*j);
//addedge(2*j,2*i);
//addedge(2*i+1,2*j+1);
//addedge(2*j+1,2*i+1);
}
}
}
for(i=;i<*n;i++)
if(!dfn[i])
Tarjan(i);
int flag=;
for(i=;i<n;i++)
if(belong[*i]==belong[*i+]){
flag=;
break;
}
if(flag)
puts("YES");
else
puts("NO");
}
return ;
}
POJ 3678 Katu Puzzle (经典2-Sat)的更多相关文章
- POJ 3678 Katu Puzzle(2 - SAT) - from lanshui_Yang
Description Katu Puzzle is presented as a directed graph G(V, E) with each edge e(a, b) labeled by a ...
- POJ 3678 Katu Puzzle(2-SAT,合取范式大集合)
Katu Puzzle Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9987 Accepted: 3741 Descr ...
- poj 3678 Katu Puzzle(2-sat)
Description Katu Puzzle ≤ c ≤ ). One Katu ≤ Xi ≤ ) such that for each edge e(a, b) labeled by op and ...
- POJ 3678 Katu Puzzle (2-SAT)
Katu Puzzle Time Limit: 1000MS ...
- poj 3678 Katu Puzzle 2-SAT 建图入门
Description Katu Puzzle is presented as a directed graph G(V, E) with each edge e(a, b) labeled by a ...
- poj 3678 Katu Puzzle(Two Sat)
题目链接:http://poj.org/problem?id=3678 代码: #include<cstdio> #include<cstring> #include<i ...
- POJ 3678 Katu Puzzle 2-SAT 强连通分量 tarjan
http://poj.org/problem?id=3678 给m条连接两个点的边,每条边有一个权值0或1,有一个运算方式and.or或xor,要求和这条边相连的两个点经过边上的运算后的结果是边的权值 ...
- POJ 3678 Katu Puzzle
Description 给出一个关系,包括 And,Xor,Or 问是否存在解. Sol 经典的2-SAT问题. 把每个值看成两个点,一个点代表选 \(0\) ,另一个代表选 \(1\) . 首先来看 ...
- POJ 3678 Katu Puzzle(强连通 法)
题目链接 题意:给出a, b, c 和操作类型 (与或异或),问是否满足所有的式子 主要是建图: 对于 and , c == 1: 说明 a 和 b都是1,那么 0 就不能取, a' -> a ...
随机推荐
- PHP文件操作[总结]
1.前言 工作中涉及到数据处理,后台需要用到PHP处理数据,之前没有接触过PHP,借此机会了解了一下PHP,PHP很方便,很灵活,编码很舒服,很喜欢用PHP处理后台数据.今天总结一下php文件操作,主 ...
- dubbo Framework pic
dubbo Framework pic
- Docker: Unknown – Unable to query docker version: x509: certificate is valid for
I was playing around with Docker locally and somehow ended up with this error when I tried to list ...
- 准备Mahout所用的向量ApplesToVectors
<strong><span style="font-size:18px;">/*** * @author YangXin * @info 准备Mahout所 ...
- tpcc-mysql 系列二:进行TPCC测试
1:开始测试 tpcc_start -h server_host -P port -d database_name -u mysql_user \ -p mysql_password -w wareh ...
- python之tcp自动重连
操作系统: CentOS 6.9_x64 python语言版本: 2.7.13 问题描述 现有一个tcp客户端程序,需定期从服务器取数据,但由于种种原因(网络不稳定等)需要自动重连. 测试服务器示例代 ...
- Spring学习笔记六:Spring整合Hibernate
转载请注明原文地址:http://www.cnblogs.com/ygj0930/p/6785323.html 前言:整合概述 Spring整合Hibernate主要是把Hibernate中常用的S ...
- CentOS7中zip压缩和unzip解压缩命令详解
安装zip.unzip应用 yum install zip unzip 以下命令均在/home目录下操作cd /home #进入/home目录1.把/home目录下面的mydata目录压缩为mydat ...
- secureCRT,永久设置,保护眼睛,配色方案
配色后效果如下: 下面开始配色 1.选项(Options)==>会话选项(Sessions options)==>终端(Terminal)==>仿真(Emulation) 按图中标注 ...
- createjs入门
createjs是一个轻量级的框架,稍微有点时间和耐心,就可以把全部源代码都看一遍,毕竟只有三十几个js文件.地址:http://www.createjs.com/ 开发createjs的动画或游戏, ...