『cs231n』卷积神经网络工程实践技巧_上
概述

数据增强
思路:在训练的时候引入干扰,在测试的时候避免干扰。

翻转图片增强数据。

随机裁切图片后调整大小用于训练,测试时先图像金字塔制作不同尺寸,然后对每个尺寸在固定位置裁切固定大小进入训练,最后对所有结果取平均值。

对颜色信息进行主成分分析并重建
迁移学习

三种网络训练思路:

中量数据的训练思路:先训练附加层,收敛后整体整体微调(funetuning)

值得注意:少量低相似度数据处理方式,虽然不乐观,但可以尝试不同层提取特征后组合处理(感觉和之前看的腾讯的检测文档边缘工程案例相似:基于 TensorFlow 在手机端实现文档检测)

实际上预训练模型不是特例,几乎大型计算机视觉任务都会使用预先训练好的模型加速。
卷积网络架构
感受野大小探讨

双层3*3卷积核感受野大小为5*5

三层3*3卷积核感受野大小为7*7,有意思的是这等价于单层7*7大小的卷积核
对比同感受野不同卷积结构优劣

需学习参数多层小卷积核网络更少

运算量也是多层小卷积核结构更少
[思路]:尝试把大的单层卷积分解为小的多层卷积
[问题]:3*3是最小的了,如何分解它提升效率?
分解思路一:1*1瓶颈层

尝试1*1卷积核引入提升效率,不过由于1*1的卷积核无法顾及周边信息,所以只能作为一个辅助,上图的瓶颈结构从输入输出上来看等价于单层3*3网络

对比需学习参数,我们发现还是复杂但小的结构更少
分解思路二:不对称卷积网络

另一种分解3*3卷积网络的方法,效果同样不错

这个看起来很蹩脚的网络架构(不对称卷积网络)主要由Google使用,它自家的Inception有复杂的不对称网络&特征拼接结构(如上图),有意思的是我学习tensorflow时尝试写过Inception3的最终层结构,的确是个脑洞大开的东西,看了这节课才算明白了人家为什么这么设计。注意,上图同时也使用了1*1瓶颈层。
总结:















『cs231n』卷积神经网络工程实践技巧_上的更多相关文章
- 『cs231n』卷积神经网络工程实践技巧_下
概述 计算加速 方法一: 由于计算机计算矩阵乘法速度非常快,所以这是一个虽然提高内存消耗但是计算速度显著上升的方法,把feature map中的感受野(包含重叠的部分,所以会加大内存消耗)和卷积核全部 ...
- 『cs231n』卷积神经网络的可视化与进一步理解
cs231n的第18课理解起来很吃力,听后又查了一些资料才算是勉强弄懂,所以这里贴一篇博文(根据自己理解有所修改)和原论文的翻译加深加深理解,其中原论文翻译比博文更容易理解,但是太长,而博文是业者而非 ...
- Stanford CS231n实践笔记(课时22卷积神经网络工程实践技巧与注意点 cnn in practise 上)
本课主要2个实践内容: 1.keras中数据集丰富,从数据集中提取更多特征(Data augmentation) 2.迁移学习(Tranform learning) 代码:https://github ...
- 『cs231n』循环神经网络RNN
循环神经网络 循环神经网络介绍摘抄自莫凡博士的教程 序列数据 我们想象现在有一组序列数据 data 0,1,2,3. 在当预测 result0 的时候,我们基于的是 data0, 同样在预测其他数据的 ...
- 『cs231n』通过代码理解风格迁移
『cs231n』卷积神经网络的可视化应用 文件目录 vgg16.py import os import numpy as np import tensorflow as tf from downloa ...
- 『cs231n』计算机视觉基础
线性分类器损失函数明细: 『cs231n』线性分类器损失函数 最优化Optimiz部分代码: 1.随机搜索 bestloss = float('inf') # 无穷大 for num in range ...
- 『TensorFlow』通过代码理解gan网络_中
『cs231n』通过代码理解gan网络&tensorflow共享变量机制_上 上篇是一个尝试生成minist手写体数据的简单GAN网络,之前有介绍过,图片维度是28*28*1,生成器的上采样使 ...
- 【cs231n】卷积神经网络
较好的讲解博客: 卷积神经网络基础 深度卷积模型 目标检测 人脸识别与神经风格迁移 译者注:本文翻译自斯坦福CS231n课程笔记ConvNet notes,由课程教师Andrej Karpathy授权 ...
- 『cs231n』通过代码理解gan网络&tensorflow共享变量机制_上
GAN网络架构分析 上图即为GAN的逻辑架构,其中的noise vector就是特征向量z,real images就是输入变量x,标签的标准比较简单(二分类么),real的就是tf.ones,fake ...
随机推荐
- Linux服务器---ssh登录
Ssh登录 Ssh是建立在应用层和传输层的安全协议,专门为远程登录回话和其他网络服务提供安全性.利用ssh可以有效的防止远程管理中的信息泄露问题,同时ssh传输的数据是经过压缩的,可以加快传输 ...
- Linux基础命令---findfs
findfs 查找指定卷标或者UUID的文件系统对应的设备文件.findfs将搜索系统中的磁盘,寻找具有标签匹配标签或与UUID相等的文件系统.如果找到文件系统,文件系统的设备名称将打印在stdout ...
- Centos6版本使用yum报错 Loaded plugins: fastestmirror, refresh-packagekit, security Loading mirror speeds from cached hostfi Setting up Install Process No package gcc available. Error: Nothing to do
在使用Centos6版本yum时报错 Loaded plugins: fastestmirror, refresh-packagekit, securityLoading mirror speeds ...
- Git在windows下上传文件至github流程
github是开发者分享的一个平台,这里不多说,想要上传文件至github需要有一个开发者账号,还需要在windows下安装好了git. 做好准备工作之后,接下来操作 一:登录github,创建项目 ...
- bzoj 2038 A-小Z的袜子[hose] - 莫队算法
作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命…… 具体来说,小Z把这N只袜子从1到N编号,然后从 ...
- USACO 1.3 Ski Course Design - 暴力
Ski Course Design Farmer John has N hills on his farm (1 <= N <= 1,000), each with an integer ...
- 高通RFC适配RFFE-添加MIPI设备【转】
本文转载自:https://blog.csdn.net/u011212816/article/details/80828625 RF driver主要设计到的器件 1.Transceiver 2.RF ...
- bootstrap datarangepicker如何使用
本文为博主原创,未经允许不得转载: 下载资源文件: 地址:Github:https://github.com/dangrossman/bootstrap-daterangepicker/ 1.页面引用 ...
- UVa 11054 Gergovia的酒交易
https://vjudge.net/problem/UVA-11054 题意:直线上有n个等距的村庄,每个村庄要么买酒,要么卖酒.设第i个村庄对酒的需求为ai,ai>0表示买酒,ai<0 ...
- asp.net webform 自定义 select 绑定数值
前台: <select id="ddlAddedItemType" runat="server"> <option value="& ...