1)简介:

DESeq2-package: for differential analysis of count data(对count data 做差异分析)

2)安装

if("DESeq2" %in% rownames(installed.packages()) == FALSE) {source("http://bioconductor.org/biocLite.R");biocLite("DESeq2")}
suppressMessages(library(DESeq2))
ls('package:DESeq2')

3)对象的使用说明

3.1)coef(Extract a matrix of model coefficients/standard errors,高级用户检验模型系数)

语法:coef(object, SE = FALSE, ...)

参数解释:

object:a DESeqDataSet returned by DESeq, nbinomWaldTest, or nbinomLRT.

例子:

dds <- makeExampleDESeqDataSet(m=4)
dds <- DESeq(dds)
coef(dds)[1,]
coef(dds, SE=TRUE)[1,]

3.2) collapseReplicates:Collapse technical replicates in a RangedSummarizedExperiment or DESeqDataSet(用于消除技术重复)
用法:collapseReplicates(object, groupby, run, renameCols = TRUE)
参数:

object:A RangedSummarizedExperiment or DESeqDataSet
groupby:a grouping factor, as long as the columns of object,分组因子
run:optional, the names of each unique column in object. if provided, a new column runsCollapsed will be added to the colData which pastes together the names of run (测序run)
renameCols:whether to rename the columns of the returned object using the levels of the grouping factor

例子:

dds <- makeExampleDESeqDataSet(m=12)
str(dds)
dds$sample <- factor(sample(paste0("sample",rep(1:9, c(2,1,1,2,1,1,2,1,1))))) (#共9个样品:其中 3个样品有2个技术重重)
dds$run <- paste0("run",1:12) #12个run道
ddsColl <- collapseReplicates(dds, dds$sample, dds$run)
# examine the colData and column names of the collapsed data
colData(ddsColl)
colnames(ddsColl)
# check that the sum of the counts for "sample1" is the same
# as the counts in the "sample1" column in ddsColl
matchFirstLevel <- dds$sample == levels(dds$sample)[1]
stopifnot(all(rowSums(counts(dds[,matchFirstLevel])) == counts(ddsColl[,1])))

3.3)counts:Accessors for the ’counts’ slot of a DESeqDataSet object(对表达矩阵进行统计,)

one row for each observational unit (gene or the like), and one column for each sample(行代表观察值(例如基因),列代表样本(例如肝、脾、肾等))

语法:counts(object, normalized = FALSE,replaced = FALSE)

参数:

object:a DESeqDataSet object(表达矩阵).
normalized:logical indicating whether or not to divide the counts by the size factors or normalization factors before returning (normalization factors always preempt size factors),(即不同量级的数据要不要归一化)
replaced:返回极端值

dds <- makeExampleDESeqDataSet(m=4)  ##构建一个表达矩阵
head(counts(dds))
dds <- estimateSizeFactors(dds) # run this or DESeq() first
head(counts(dds, normalized=TRUE))

3.4)DESeq:Differential expression analysis based on the Negative Binomial (a.k.a.Gamma-Poisson) distribution(基于负二项分布进行差异分析)

语法:

DESeq(object, test = c("Wald", "LRT"), fitType = c("parametric", "local","mean"), sfType = c("ratio", "poscounts", "iterate"), betaPrior,full = design(object), reduced, quiet = FALSE,minReplicatesForReplace = 7, modelMatrixType, useT = FALSE, minmu = 0.5,
parallel = FALSE, BPPARAM = bpparam())

参数:

object:a DESeqDataSet object(表达矩阵对象)
test:Wald" or "LRT"检验
fitType:either "parametric", "local", or "mean"
sfType:either "ratio", "poscounts", or "iterate" for teh type of size factor estimation.
betaPrior:whether or not to put a zero-mean normal prior on the non-intercept coefficients
reduced:for test="LRT", a reduced formula to compare against
quiet:whether to print messages at each step
minReplicatesForReplace:the minimum number of replicates required
modelMatrixType:either "standard" or "expanded", which describe how the model matrix, X of the GLM formula is formed.
useT:logical, passed to nbinomWaldTest, default is FALSE
minmu:lower bound on the estimated count for fitting gene-wise dispersion
parallel:if FALSE, no parallelization. if TRUE, parallel execution using BiocParallel,
BPPARAM:an optional parameter object passed internally to bplapply when parallel=TRUE.
例子:

# count tables from RNA-Seq data
cnts <- matrix(rnbinom(n=1000, mu=100, size=1/0.5), ncol=10)
cond <- factor(rep(1:2, each=5)) # object construction
dds <- DESeqDataSetFromMatrix(cnts, DataFrame(cond), ~ cond) # standard analysis
dds <- DESeq(dds)
res <- results(dds) # moderated log2 fold changes
resultsNames(dds)
resLFC <- lfcShrink(dds, coef=2, type="apeglm") # an alternate analysis: likelihood ratio test
ddsLRT <- DESeq(dds, test="LRT", reduced= ~ 1)
resLRT <- results(ddsLRT)

3.5)DESeqDataSet-class(DESeqDataSet object and constructors)

语法:

DESeqDataSet(se, design, ignoreRank = FALSE)
DESeqDataSetFromMatrix(countData, colData, design, tidy = FALSE,ignoreRank = FALSE, ...)
DESeqDataSetFromHTSeqCount(sampleTable, directory = ".", design,ignoreRank = FALSE, ...)
DESeqDataSetFromTximport(txi, colData, design, ...)

例子:

countData <- matrix(1:100,ncol=4)
condition <- factor(c("A","A","B","B"))
dds <- DESeqDataSetFromMatrix(countData, DataFrame(condition), ~ condition)

3.6)DESeqResults-class:DESeqResults object and constructor

语法:DESeqResults(DataFrame, priorInfo = list())

参数:

DataFrame:a DataFrame of results, standard column names are: baseMean, log2FoldChange,lfcSE, stat, pvalue, padj.
priorInfo:a list giving information on the log fold change prior

3.7)DESeqTransform-class(DESeqTransform object and constructor)

语法:DESeqTransform(SummarizedExperiment)

参数:SummarizedExperiment a RangedSummarizedExperiment

3.8)rlog Apply a ’regularized log’ transformation

用法:
rlog(object, blind = TRUE, intercept, betaPriorVar, fitType = "parametric")
rlogTransformation(object, blind = TRUE, intercept, betaPriorVar,fitType = "parametric")

dds <- makeExampleDESeqDataSet(m=6,betaSD=1)
rld <- rlog(dds)
dists <- dist(t(assay(rld)))
plot(hclust(dists))

3.9)plotPCA(Sample PCA plot for transformed data)

用法:plotPCA(object, intgroup = "condition",ntop = 500, returnData = FALSE)

参数:

object:a DESeqTransform object, with data in assay(x), produced for example by either rlog or varianceStabilizingTransformation.
intgroup: interesting groups: a character vector of names in colData(x) to use for grouping
ntop:number of top genes to use for principal components, selected by highest row variance
returnData:should the function only return the data.frame of PC1 and PC2 with intgroup covariates for custom plotting

# using rlog transformed data:
dds <- makeExampleDESeqDataSet(betaSD=1)
rld <- rlog(dds)
plotPCA(rld) # also possible to perform custom transformation:
dds <- estimateSizeFactors(dds)
# shifted log of normalized counts
se <- SummarizedExperiment(log2(counts(dds, normalized=TRUE) + 1),
colData=colData(dds))
# the call to DESeqTransform() is needed to
# trigger our plotPCA method.
plotPCA( DESeqTransform( se ) )

3.10)

DESeq2包的更多相关文章

  1. 简单使用DESeq2/EdgeR做差异分析

    简单使用DESeq2/EdgeR做差异分析 Posted: 五月 07, 2017  Under: Transcriptomics  By Kai  no Comments DESeq2和EdgeR都 ...

  2. airway之workflow

    1)airway简介 在该workflow中,所用的数据集来自RNA-seq,气道平滑肌细胞(airway  smooth muscle cells )用氟美松(糖皮质激素,抗炎药)处理.例如,哮喘患 ...

  3. miRAN 分析以及mRNA分析

    一些参考资料 http://www.360doc.com/content/17/0528/22/19913717_658086490.shtml https://www.cnblogs.com/tri ...

  4. Error in library(DESeq2) : 不存在叫‘DESeq2’这个名字的程辑包

    Error in read.dcf(file.path(pkgname, "DESCRIPTION"), c("Package", "Type&quo ...

  5. DESeq2 install --- 如何安装R包("RcppArmadillo")?

    安装R包("RcppArmadillo")失败,导致依赖该包的DESeq2 无法使用: 首先对gcc,g++升级至4.7, 但依然报错,还是安装不了RcppArmadillo: 报 ...

  6. R包安装的正确方式

    options("repos" = c(CRAN="https://mirrors.tuna.tsinghua.edu.cn/CRAN/")) if(! req ...

  7. Npm包的开发

    个人开发包的目录结构 ├── coverage //istanbul测试覆盖率生成的文件 ├── index.js //入口文件 ├── introduce.md //说明文件 ├── lib │   ...

  8. Windows server 2012 添加中文语言包(英文转为中文)(离线)

    Windows server 2012 添加中文语言包(英文转为中文)(离线) 相关资料: 公司环境:亚马孙aws虚拟机 英文版Windows2012 中文SQL Server2012安装包,需要安装 ...

  9. 如何在nuget上传自己的包+搭建自己公司的NuGet服务器(新方法)

    运维相关:http://www.cnblogs.com/dunitian/p/4822808.html#iis 先注册一个nuget账号https://www.nuget.org/ 下载并安装一下Nu ...

随机推荐

  1. 这些 .Net and Core 相关的开源项目,你都知道吗?(持续更新中...)

    最近更新时间2017-12-28 序列化 Json.NET http://json.codeplex.com/Json.Net是一个读写Json效率比较高的.Net框架.Json.Net 使得在.Ne ...

  2. 如何在UltraEdit中高亮显示PB代码

    打开UE,从菜单中选择高级->配置… 点击打开按钮,注意文件WordFile.txt最后一个高亮显示语言的编号,格式为“ /L(number) ”,假设最后一个高亮显示语言的编号是15,修改UE ...

  3. Maven基本使用

    Maven基本使用 一.安装 先去官网下载maven(http://maven.apache.org/download.cgi) 下载下来解压后如下所示  配置环境变量   查看配置成功与否  mav ...

  4. WPF Demo1

    <Window x:Class="Demo1.MainWindow" xmlns="http://schemas.microsoft.com/winfx/2006/ ...

  5. Java中对话框的弹出

    最近在做学校的课程设计,java编程需要用到对话框弹出,第一反应是js中的alert和confirm,java的话瞬间懵,查阅学习总结如下,用以以后的学习 1.显示一个错误对话框,该对话框显示的 me ...

  6. springMVC集成CXF快速发布webService

    本文转载自:http://www.cnblogs.com/xiaochangwei/p/5399507.html 继上一篇webService入门之后,http://www.cnblogs.com/x ...

  7. 【Hibernate学习笔记-5】@Formula注解的使用

    ORM映射关系:注解方式 package org.crazyit.app.domain; import javax.persistence.*; import org.hibernate.annota ...

  8. java获取随机密码

    import java.util.Random; public class tests { /** * * author LiuQiang * date 2013-10-14 下午01:13:54 * ...

  9. [UE4]创建对象的的几种姿势(C++)

    DEMO源代码 这个DEMO演示了在C++代码中,创建UE4的常见类型的对象,包括Actor,ActorComponent,加载资源等. 源代码请从这里下载:https://code.csdn.net ...

  10. golang web框架 beego 学习 (四) 连接mysql

    1 DB参数配置在app.conf appname = gowebProject httpport = runmode = dev [db] host= localhost port= databas ...