完成了第一个mapReduce例子,记录一下。

实验环境:

hadoop在三台ubuntu机器上部署
开发在window7上进行
hadoop版本2.2.0

下载了hadoop-eclipse-plugin-2.2.0.jar放入eclipse的plugin文件夹中,重启后有如下标识

下方右击: add hadoop location

此时,eclipse 左侧会有

上图即简单的实现了一个嵌于eclipse中的用于访问hdfs系统的client端,其中可以增删改查文件。

-------------------------------

下面研究一下编程吧...

1 新建一个map/Reduce Project,本例中由于eclpise与hadoop不在一台主机上,着实费了一些时间

如下图,此时应该选择第二项(specify hadoop library locaiton), 导入的应该是hadoop目录下的lib/native文件夹,这里如果选错了,project是建不起来的!

2. 取出\hadoop-2.2.0\share\hadoop\mapreduce\sources\hadoop-mapreduce-examples-2.2.0-sources.jar下,解压后导入eclipse,好了,可以开始研究代码了。.

基本流程如下

(input) <k1, v1> -> map -> <k2, v2> -> combine -> <k2, v2> -> reduce -> <k3, v3> (output)

/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hadoop.examples; import java.io.IOException;
import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser; public class WordCount {
/*Mapper(14-26行)中的map方法(18-25行)通过指定的 TextInputFormat(49行)一次处理一行。然后,它通过StringTokenizer 以空格为分隔符将一行切分为若干tokens,之后,输出< <word>, 1> 形式的键值对。*/
public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}

/*
做Combiner: 每次map运行之后,会对输出按照key进行排序,然后把输出传递给本地的combiner(按照作业的配置与Reducer一样),进行本地聚合
做Reducer中的reduce方法 仅是将每个key(本例中就是单词)出现的次数求和。
*/
public static class IntSumReducer
extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
} public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println("Usage: wordcount <in> <out>");
System.exit(2);
}
Job job = new Job(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class); // combiner与reducer用的类一样,减轻reducer负担
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}

3. wordCount执行效果如下

root@kali:/data/hadoop/share/hadoop# hadoop jar ./mapreduce/hadoop-mapreduce-examples-2.2..jar  wordcount /abc/start-all.sh /abd/out
// :: INFO Configuration.deprecation: session.id is deprecated. Instead, use dfs.metrics.session-id
// :: INFO jvm.JvmMetrics: Initializing JVM Metrics with processName=JobTracker, sessionId=
// :: INFO input.FileInputFormat: Total input paths to process :
// :: INFO mapreduce.JobSubmitter: number of splits:
// :: INFO Configuration.deprecation: user.name is deprecated. Instead, use mapreduce.job.user.name
// :: INFO Configuration.deprecation: mapred.jar is deprecated. Instead, use mapreduce.job.jar
// :: INFO Configuration.deprecation: mapred.output.value.class is deprecated. Instead, use mapreduce.job.output.value.class
// :: INFO Configuration.deprecation: mapreduce.combine.class is deprecated. Instead, use mapreduce.job.combine.class
// :: INFO Configuration.deprecation: mapreduce.map.class is deprecated. Instead, use mapreduce.job.map.class

http://phz50.iteye.com/blog/932373

http://www.ibm.com/developerworks/cn/java/j-javadev2-15/

http://www.cnblogs.com/flyoung2008/archive/2011/12/09/2281400.html

http://f.dataguru.cn/thread-167597-1-1.html  hadoop在eclipse中上传文件size为0

http://cs.smith.edu/dftwiki/index.php/Hadoop_Tutorial_1_--_Running_WordCount  step by step!

第一个map reduce程序的更多相关文章

  1. Hadoop学习笔记2 - 第一和第二个Map Reduce程序

    转载请标注原链接http://www.cnblogs.com/xczyd/p/8608906.html 在Hdfs学习笔记1 - 使用Java API访问远程hdfs集群中,我们已经可以完成了访问hd ...

  2. map reduce程序示例

    map reduce程序示例 package test2; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop. ...

  3. 使用Python实现Map Reduce程序

    使用Python实现Map Reduce程序 起因 想处理一些较大的文件,单机运行效率太低,多线程也达不到要求,最终采用了集群的处理方式. 详细的讨论可以在v2ex上看一下. 步骤 MapReduce ...

  4. eclipse 中运行 Hadoop2.7.3 map reduce程序 出现错误(null) entry in command string: null chmod 0700

    运行map reduce任务报错: (null) entry in command string: null chmod 0700 解决办法: 在https://download.csdn.net/d ...

  5. ODPS 下一个map / reduce 准备

    阿里接到一个电话说练习和比赛智能二选一, 真的很伤心, 练习之前积极老龄化的权利. 要总结ODPS下一个 写map / reduce 并进行购买预测过程. 首先这里的hadoop输入输出都是表的形式, ...

  6. java 写一个 map reduce 矩阵相乘的案例

    1.写一个工具类用来生成 map reduce 实验 所需 input 文件 下面两个是原始文件 matrix1.txt 1 2 -2 0 3 3 4 -3 -2 0 2 3 5 3 -1 2 -4 ...

  7. Hadoop 使用Combiner提高Map/Reduce程序效率

    众所周知,Hadoop框架使用Mapper将数据处理成一个<key,value>键值对,再网络节点间对其进行整理(shuffle),然后使用Reducer处理数据并进行最终输出. 在上述过 ...

  8. Hadoop实战:使用Combiner提高Map/Reduce程序效率

    好不easy算法搞定了.小数据測试也得到了非常好的结果,但是扔到进群上.挂上大数据就挂了.无休止的reduce不会结束了. .. .. .... .. ... .. ================= ...

  9. Map/Reduce 工作机制分析 --- 作业的执行流程

    前言 从运行我们的 Map/Reduce 程序,到结果的提交,Hadoop 平台其实做了很多事情. 那么 Hadoop 平台到底做了什么事情,让 Map/Reduce 程序可以如此 "轻易& ...

随机推荐

  1. MinGW32和64位交叉编译环境的安装和使用

    原文出处: CompileGraphics Magick, Boost, Botan and QT with MinGW64 under Windows 7 64 http://www.kinetic ...

  2. 最近迷上了GUI

    package windows; import java.awt.BorderLayout; import javax.swing.ButtonGroup; import javax.swing.JB ...

  3. 【转载】K-NN算法 学习总结

    声明:作者:会心一击 出处:http://www.cnblogs.com/lijingchn/ 本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接, ...

  4. 开源轻量级分布式文件系统--FastDFS

    FastDFS一个高效的分布式文件系统 分布式文件系统FastDFS原理介绍 分布式文件系统FastDFS设计原理 FastDFS安装.配置.部署(一)-安装和部署 分布式文件系统 - FastDFS ...

  5. LeetCode224——Basic Calculator

    Implement a basic calculator to evaluate a simple expression string. The expression string may conta ...

  6. Miniconda 安装测试

    背景: conda 是一个python的计算环境,minicoda 可以看做是conda的精简版 官网: https://conda.io/miniconda.html 安装: miniconda 支 ...

  7. Junit结合Spring对Dao层进行单元测试

    关于单元测试,上一次就简单的概念和Mock基础做了,参考:http://60.174.249.204:8888/in/modules/article/view.article.php/74 实际开发过 ...

  8. memcached系列之

    Slab Allocator的机制分配.管理内存 slabs---->slabs class:chunk size------>申请内存后分配的规格. chunk-->存放记录的单位 ...

  9. MyEclipse如何恢复删掉的文件

    今天一不小心删了项目里的两个包,心里那个痛啊,一想MyEclipse这么强大,应该会有恢复文件的功能吧,要不就太坑了啊. 果不其然让我找到了方法: 如图:右击项目选择 然后在弹出的页面勾选需要恢复的文 ...

  10. 内存管理 初始化(七)kmem_cache_init_late 初始化slab分配器(下)

    我们知道kmem_cache中对于每CPU都有一个array_cache,已作为每CPU申请内存的缓存.  此函数的目的在于:每个kmem_cache都有一个kmem_list3实例,该实例的shar ...