LCA最近公共祖先(least common ancestors)
#include"stdio.h"
#include"string.h"
#include"iostream"
#include"queue"
#define M 111111
using namespace std;
struct st
{
int u,v,next,w;
}edge[M*2];
int rank[M],head[M],t,pre[M],use[M],dis[M];
void init()
{
t=0;
memset(head,-1,sizeof(head));
}
void add(int a,int b,int w)
{
edge[t].u=a;
edge[t].v=b;
edge[t].w=w;
edge[t].next=head[a];
head[a]=t++;
}
void bfs(int s)
{
queue<int>q;
memset(use,0,sizeof(use));
memset(rank,0,sizeof(rank));
use[s]=1;
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
for(int i=head[u];i!=-1;i=edge[i].next)
{
int v=edge[i].v;
if(!use[v])
{
use[v]=1;
rank[v]=rank[u]+1;
pre[v]=u;
dis[v]=edge[i].w;
q.push(v);
}
}
}
}//用bfs对点进行分层
int targan(int a,int b)
{
int sum=0;
while(a!=b)
{
if(rank[a]>rank[b])
{
sum+=dis[a];
a=pre[a];
}
else
{
sum+=dis[b];
b=pre[b];
}
}
return sum;
}//查找
/*int targan(int a,int b)
{
if(a==b)
return a;
else if(rank[a]>rank[b])
return targan(pre[a],b);
else
return targan(a,pre[b]);
}*/深搜写法
int main()
{
int n,m,a,i,b,c;
while(scanf("%d%d",&n,&m)!=-1)
{
init();
while(m--)
{
scanf("%d%d%d",&a,&b,&c);
add(a,b,c);
add(b,a,c);
}
bfs(1);
for(i=1;i<=n;i++)
printf("%d ",rank[i]);
while(scanf("%d%d",&a,&b)!=-1)
{
int ans=targan(a,b);
printf("%d\n",ans);
}
}
}
LCA最近公共祖先(least common ancestors)的更多相关文章
- 最近公共祖先(least common ancestors algorithm)
lca问题是最近公共祖先问题,一般是针对树结构的.现在有两种方法来解决这样的问题 1. On-line algorithm 用比较长的时间做预处理.然后对每次询问进行回答. 思路:对于一棵树中的两个节 ...
- 最近公共祖先 Lowest Common Ancestors
基于深度的LCA算法: 对于两个结点u.v,它们的深度分别为depth(u).depth(v),对于其公共祖先w,深度为depth(w),u需要向上回溯depth(u)-depth(w)步,v需要d ...
- 最近公共祖先 Least Common Ancestors(LCA)算法 --- 与RMQ问题的转换
[简介] LCA(T,u,v):在有根树T中,询问一个距离根最远的结点x,使得x同时为结点u.v的祖先. RMQ(A,i,j):对于线性序列A中,询问区间[i,j]上的最值.见我的博客---RMQ - ...
- LCA 近期公共祖先 小结
LCA 近期公共祖先 小结 以poj 1330为例.对LCA的3种经常使用的算法进行介绍,分别为 1. 离线tarjan 2. 基于倍增法的LCA 3. 基于RMQ的LCA 1. 离线tarjan / ...
- lca 最近公共祖先
http://poj.org/problem?id=1330 #include<cstdio> #include<cstring> #include<algorithm& ...
- Tarjan算法应用 (割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)问题)(转载)
Tarjan算法应用 (割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)问题)(转载) 转载自:http://hi.baidu.com/lydrainbowcat/blog/item/2 ...
- LCA(最近公共祖先)模板
Tarjan版本 /* gyt Live up to every day */ #pragma comment(linker,"/STACK:1024000000,1024000000&qu ...
- CodeVs.1036 商务旅行 ( LCA 最近公共祖先 )
CodeVs.1036 商务旅行 ( LCA 最近公共祖先 ) 题意分析 某首都城市的商人要经常到各城镇去做生意,他们按自己的路线去做,目的是为了更好的节约时间. 假设有N个城镇,首都编号为1,商人从 ...
- LCA近期公共祖先
LCA近期公共祖先 该分析转之:http://kmplayer.iteye.com/blog/604518 1,并查集+dfs 对整个树进行深度优先遍历.并在遍历的过程中不断地把一些眼下可能查询到的而 ...
- 235. Lowest Common Ancestor of a Binary Search Tree(LCA最低公共祖先)
Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the ...
随机推荐
- ispriter自动构建css-sprite
优化你的网站: 当一个网站中的资源(比如:js文件.css文件.图片等)很多时必然影响用户访问速度,这时候你就需要做网站性能优化,你可以选择把资源分开放在不同的服务器上,因为一个资源服务器最多可以同时 ...
- C#WinForm窗体事件执行次序
当 Windows Form 应用程序启动时,会以下列顺序引发主要表单的启动事件: System.Windows.Forms.Control.HandleCreated ...
- Eclipse------如何将项目通过maven编译并打包
1.右击项目>>>点击Debug As>>>点击 Maven install进行编译,编译成功后入图 2.右击项目>>>点击Debug As> ...
- Core Java笔记
前言 一·基础知识 二·定义,关键字和类型 三·表达式和控制流 四·数组 五·对象和类 六·高级语言特性 七·异常 八·图形用户接口 九·AWT(Abstract Window Toolkit) 事件 ...
- ios开发之--通过通知监听textfield的输入状态,判断按钮的状态
第一步: _rightBtn = [UIButton buttonWithType:UIButtonTypeCustom]; _rightBtn.frame = CGRectMake(kWidth - ...
- zabbix添加对tomcat线程池的监控
在zabbix模板中添加以下监控项: 可以参考文档:http://www.fblinux.com/?p=616
- 【AI】图像识别-物体检测-百度AI-EasyDL-NodeJS
var https = require('https') var express = require('express'); var app = express(); var bodyParser = ...
- 用Python编写一个简单的Http Server
用Python编写一个简单的Http Server Python内置了支持HTTP协议的模块,我们可以用来开发单机版功能较少的Web服务器.Python支持该功能的实现模块是BaseFTTPServe ...
- 用shell查找某目录下的最大文件
这是一个很有趣的问题,因为作为一个shell菜鸟,我第一时间是没有任何想法的.心里纳闷为什么这样的操作Linux居然没有直接的命令实现这样的查询. 很自然地,第一感觉就是用awk去实现,因为菜鸟我看a ...
- Stay hungry, Stay foolish 的原义
乔布斯在斯坦福大学毕业演讲中说过,他最喜欢的一句话叫做"Stay hungry, Stay foolish". "Stewart和他的人出了好几期<地球产品目录&g ...