LCA最近公共祖先(least common ancestors)
#include"stdio.h"
#include"string.h"
#include"iostream"
#include"queue"
#define M 111111
using namespace std;
struct st
{
int u,v,next,w;
}edge[M*2];
int rank[M],head[M],t,pre[M],use[M],dis[M];
void init()
{
t=0;
memset(head,-1,sizeof(head));
}
void add(int a,int b,int w)
{
edge[t].u=a;
edge[t].v=b;
edge[t].w=w;
edge[t].next=head[a];
head[a]=t++;
}
void bfs(int s)
{
queue<int>q;
memset(use,0,sizeof(use));
memset(rank,0,sizeof(rank));
use[s]=1;
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
for(int i=head[u];i!=-1;i=edge[i].next)
{
int v=edge[i].v;
if(!use[v])
{
use[v]=1;
rank[v]=rank[u]+1;
pre[v]=u;
dis[v]=edge[i].w;
q.push(v);
}
}
}
}//用bfs对点进行分层
int targan(int a,int b)
{
int sum=0;
while(a!=b)
{
if(rank[a]>rank[b])
{
sum+=dis[a];
a=pre[a];
}
else
{
sum+=dis[b];
b=pre[b];
}
}
return sum;
}//查找
/*int targan(int a,int b)
{
if(a==b)
return a;
else if(rank[a]>rank[b])
return targan(pre[a],b);
else
return targan(a,pre[b]);
}*/深搜写法
int main()
{
int n,m,a,i,b,c;
while(scanf("%d%d",&n,&m)!=-1)
{
init();
while(m--)
{
scanf("%d%d%d",&a,&b,&c);
add(a,b,c);
add(b,a,c);
}
bfs(1);
for(i=1;i<=n;i++)
printf("%d ",rank[i]);
while(scanf("%d%d",&a,&b)!=-1)
{
int ans=targan(a,b);
printf("%d\n",ans);
}
}
}
LCA最近公共祖先(least common ancestors)的更多相关文章
- 最近公共祖先(least common ancestors algorithm)
lca问题是最近公共祖先问题,一般是针对树结构的.现在有两种方法来解决这样的问题 1. On-line algorithm 用比较长的时间做预处理.然后对每次询问进行回答. 思路:对于一棵树中的两个节 ...
- 最近公共祖先 Lowest Common Ancestors
基于深度的LCA算法: 对于两个结点u.v,它们的深度分别为depth(u).depth(v),对于其公共祖先w,深度为depth(w),u需要向上回溯depth(u)-depth(w)步,v需要d ...
- 最近公共祖先 Least Common Ancestors(LCA)算法 --- 与RMQ问题的转换
[简介] LCA(T,u,v):在有根树T中,询问一个距离根最远的结点x,使得x同时为结点u.v的祖先. RMQ(A,i,j):对于线性序列A中,询问区间[i,j]上的最值.见我的博客---RMQ - ...
- LCA 近期公共祖先 小结
LCA 近期公共祖先 小结 以poj 1330为例.对LCA的3种经常使用的算法进行介绍,分别为 1. 离线tarjan 2. 基于倍增法的LCA 3. 基于RMQ的LCA 1. 离线tarjan / ...
- lca 最近公共祖先
http://poj.org/problem?id=1330 #include<cstdio> #include<cstring> #include<algorithm& ...
- Tarjan算法应用 (割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)问题)(转载)
Tarjan算法应用 (割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)问题)(转载) 转载自:http://hi.baidu.com/lydrainbowcat/blog/item/2 ...
- LCA(最近公共祖先)模板
Tarjan版本 /* gyt Live up to every day */ #pragma comment(linker,"/STACK:1024000000,1024000000&qu ...
- CodeVs.1036 商务旅行 ( LCA 最近公共祖先 )
CodeVs.1036 商务旅行 ( LCA 最近公共祖先 ) 题意分析 某首都城市的商人要经常到各城镇去做生意,他们按自己的路线去做,目的是为了更好的节约时间. 假设有N个城镇,首都编号为1,商人从 ...
- LCA近期公共祖先
LCA近期公共祖先 该分析转之:http://kmplayer.iteye.com/blog/604518 1,并查集+dfs 对整个树进行深度优先遍历.并在遍历的过程中不断地把一些眼下可能查询到的而 ...
- 235. Lowest Common Ancestor of a Binary Search Tree(LCA最低公共祖先)
Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the ...
随机推荐
- 二维码生成:使用 JavaScript 库QRCode.js生成二维码
QRCode.js:跨浏览器的javascript二维码生成库,支持html5的Canvas画布,没有任何依赖. Github 地址:https://github.com/davidshimjs/qr ...
- JVM知识点总览-中高级Java工程师面试必备
对于搞开发的我们其实也是一样,现在流行的框架越来越多,封装的也越来越完善,各种框架可以搞定一切,几乎不用关注底层的实现,初级程序员只要熟悉基本的使用方法,便可以快速的开发上线:但对于高级程序员来讲,内 ...
- Android开发真机测试方法 (转)
转自:http://blog.csdn.net/china_lzn/article/details/7461963 Android的AVD无比的慢,无语啊,程序编的再好,都无法体验到流畅的感觉,索性, ...
- MyBatis 原码解析(version:3.2.7)
mybatis-plus 实践及架构原理.pdf mybatis-plus思维导图 首先,我们看使用原生的JDBC来操作数据库的方式: // 1. 获取JDBC Connection Connecti ...
- feed流拉取,读扩散,究竟是啥?
from:https://mp.weixin.qq.com/s?__biz=MjM5ODYxMDA5OQ==&mid=2651961214&idx=1&sn=5e80ad6f2 ...
- Java Jdk1.8 HashMap源代码阅读笔记二
三.源代码阅读 3.元素包括containsKey(Object key) /** * Returns <tt>true</tt> if this map contains a ...
- 对象克隆技术Object.clone()
Java中对象的创建 clone顾名思义就是复制, 在Java语言中, clone方法被对象调用,所以会复制对象. 所谓的复制对象,首先要分配一个和源对象同样大小的空间,在这个空间中创建一个新的对象. ...
- flexbox子盒子align-self属性
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- ios开发之--令UITableView滚动到指定位置
这个应用场景还是挺多的,代码如下: //获取到需要跳转位置的行数 NSIndexPath *scrollIndexPath = [NSIndexPath indexPathForRow: inSect ...
- MongoDB(六)-- 集群搭建
一.集群介绍 sharding通过将数据集分布于多个也称作分片(shard)的节点上来降低单节点的访问压力.每个分片都是一个独立的数据库,所有的分片组合起来构成一个逻辑上的完整意义的数据库.因此,分片 ...