证明引理 2. 1.

证明:

(1)  先证明存在正交阵 ${\bf P},{\bf Q}$ 及对角阵 ${\bf D}$ 使得 $$\bex {\bf F}={\bf P}{\bf D}{\bf Q}. \eex$$ 事实上, 由 ${\bf F}$ 可逆知 ${\bf F}^T{\bf F}$ 正定, 而存在正交阵 ${\bf Q}$, 使得 $$\bex {\bf F}^T{\bf F}={\bf Q}^T\diag(\lm_1,\cdots,\lm_n){\bf Q},\quad(\lm_i>0). \eex$$ 取 $$\bex {\bf D}=\diag(\sqrt{\lm_1},\cdots,\sqrt{\lm_n}),\quad {\bf P}={\bf F}{\bf Q}^T{\bf D}^{-1}, \eex$$ 则可直接验证 ${\bf P},{\bf Q},{\bf D}$ 适合要求.

(2)  取 $$\bex {\bf R}={\bf P}{\bf Q},\quad {\bf U}={\bf Q}^T{\bf D}{\bf Q},\quad {\bf V}={\bf P}{\bf D}{\bf P}^T \eex$$ 即满足条件.

[物理学与PDEs]第5章习题1 矩阵的极分解的更多相关文章

  1. [物理学与PDEs]第5章习题参考解答

    [物理学与PDEs]第5章习题1 矩阵的极分解 [物理学与PDEs]第5章习题2 Jacobian 的物质导数 [物理学与PDEs]第5章习题3 第二 Piola 应力张量的对称性 [物理学与PDEs ...

  2. [物理学与PDEs]第1章习题参考解答

    [物理学与PDEs]第1章习题1 无限长直线的电场强度与电势 [物理学与PDEs]第1章习题2 均匀带电球面的电场强度与电势 [物理学与PDEs]第1章习题3 常场强下电势的定解问题 [物理学与PDE ...

  3. [物理学与PDEs]第2章习题参考解答

    [物理学与PDEs]第2章习题1 无旋时的 Euler 方程 [物理学与PDEs]第2章习题2 质量力有势时的能量方程 [物理学与PDEs]第2章习题3 Laplace 方程的 Neumann 问题 ...

  4. [物理学与PDEs]第3章习题参考解答

    [物理学与PDEs]第3章习题1 只有一个非零分量的磁场 [物理学与PDEs]第3章习题2 仅受重力作用的定常不可压流理想流体沿沿流线的一个守恒量 [物理学与PDEs]第3章习题3电磁场的矢势在 Lo ...

  5. [物理学与PDEs]第4章习题参考解答

    [物理学与PDEs]第4章习题1 反应力学方程组形式的化约 - 动量方程与未燃流体质量平衡方程 [物理学与PDEs]第4章习题2 反应力学方程组形式的化约 - 能量守恒方程 [物理学与PDEs]第4章 ...

  6. [物理学与PDEs]第4章习题4 一维理想反应流体力学方程组的守恒律形式及其 R.H. 条件

    写出在忽略粘性与热传导性, 即设 $\mu=\mu'=\kappa=0$ 的情况, 在 Euler 坐标系下具守恒律形式的一维反应流动力学方程组. 由此求出在解的强间断线上应满足的 R.H. 条件 ( ...

  7. [物理学与PDEs]第3章习题3电磁场的矢势在 Lorentz 规范下满足的方程

    设 $\phi$ 及 ${\bf A}$ 分别为电磁场的标势及矢势 (见第一章 $\S$ 6). 试证明: 若 $\phi$ 及 ${\bf A}$ 满足条件 $$\bex \phi+\cfrac{1 ...

  8. [物理学与PDEs]第1章习题5 偶极子的电场强度

    试计算由习题 4 给出的电偶极子的所形成的电场的电场强度. 解答: $$\beex \bea {\bf E}(P)&=\cfrac{1}{4\pi\ve_0} \sez{\cfrac{-q}{ ...

  9. [物理学与PDEs]第5章习题10 多凸函数一个例子

    证明函数 $$\bex \hat W({\bf F})=\sedd{\ba{ll} \cfrac{1}{\det{\bf F}},&if\ \det{\bf F}>0,\\ +\inft ...

随机推荐

  1. web框架开发-分页器(Paginator)

    Django有自带的分页器,可以将数据分在不同的页面中,并提供一些属性和方法实现对分页数据的操作.分页功能的类位于django/core/paginator.py中. 常用方法 # 分页器 # pag ...

  2. System.Threading.Timer如何正确地被Dispose

    System.Threading.Timer是.NET中一个定时触发事件处理方法的类(本文后面简称Timer),它背后依靠的是.NET的线程池(ThreadPool),所以当Timer在短时间内触发了 ...

  3. 互怼、IPO、雷潮、寒冬,2018 互联网圈的那些事儿

    有了人的地方,就会有江湖. 有江湖的地方,就会有门派. 有门派的地方,就会有纷争. 有纷争的地方,就会有兴衰. 2018年马上就要离我们远去了,迎接我们的将会是新的一年——2019年.在整个过去的20 ...

  4. 开放数据接口 API 简介与使用场景、调用方法

    此文章对开放数据接口 API 进行了功能介绍.使用场景介绍以及调用方法的说明,供用户在使用数据接口时参考之用. 在给大家分享的一系列软件开发视频课程中,以及在我们的社区微信群聊天中,都积极地鼓励大家开 ...

  5. Java中,尽量相信自己,使用自己写的方法,不要使用底层提供的方法。都是坑。

    Date转LocalDate时,调用toInstant()报UnsupportedOperationException异常. https://www.jianshu.com/p/11d8ed48f7a ...

  6. 软件工程(FZU2015) 赛季得分榜,第11回合(beta冲刺+SE总结)

    SE_FZU目录:1 2 3 4 5 6 7 8 9 10 11 12 13 积分规则 积分制: 作业为10分制,练习为3分制:alpha30分:beta30分 团队项目分=团队得分+个人贡献分 个人 ...

  7. [Alpha阶段]第二次Scrum Meeting

    Scrum Meeting博客目录 [Alpha阶段]第二次Scrum Meeting 基本信息 名称 时间 地点 时长 第二次Scrum Meeting 19/04/04 大运村寝室6楼 90min ...

  8. 科大讯飞语音合成api

    import base64import jsonimport timeimport hashlibimport requests # API请求地址.API KEY.APP ID等参数,提前填好备用a ...

  9. 打开Player时出现时间格式的错误提示

    安装完Player后如果更改了Windows的系统时间和日期显示格式,再次打开Player后会出现时间日期格式错误的提醒,需要按照要求更改Windows系统设置,才能正常运行Player. 此错误提示 ...

  10. js中的枚举

    在JavaScript中,对象的属性分为可枚举和不可枚举之分,它们是由属性的enumerable值决定的.可枚举性决定了这个属性能否被for…in查找遍历到. js中基本包装类型的原型属性是不可枚举的 ...