Logic and Proofs--离散数学
- Propositions: A proposition is a declarative sentence(that is, a sentence that declares a fact ) that is either true or false, but not both.
命题是一个陈述句(即陈述事实的句子),它或真或假,但不能既真又假。
- When Alexander the Great died in 323 B.C.E, a backlash against anything related to Alexander led to trumped-up charges of impiety against Aristotle. Aristotle fled to Chalcis to avoid prosecution. He only lived one year in Chalcis, dying of a stomach ailment in 322 B.C.E.
当亚历山大大帝于公元前323年去世后,那里立刻掀起了反亚历山大的狂潮,致使亚里士多德被冠以莫须有的不敬神罪名。亚里士多德逃亡到加而西斯避难。他在加而西斯生活了一年,于公元前322年死于胃病。
- Let p be a proposition. The negation of p, denoted by ¬p, is the statement
“It is not the case that p.”
The proposition ¬p is read “not p.” The truth value of the negation of p, ¬p, is opposite of the truth value of p.
令p为一命题,则p的否定记作¬p,指
“不是p所指的情形。”
命题¬p读作“非p”。p的否定(¬p)的真值和p的真值相反。
- Let p and q be propositions. The conjunction of p and q, denoted by p∧q, is the proposition “p and q.” The conjunction p∧q is true when both p and q are true and is false otherwise.
Note that in logic the word “but” sometimes is used instead of “and” in a conjunction. For example, the statement “The sun is shining, but it is raining” is another way of saying “The sun is shining and it is raining.” (In natural language, there is a subtle difference in meaning between “and” and “but”; we will not be concerned with this nuance here.)
令p和q为命题。p、q的合取即命题“p并且q”,记作p∧q。当p和q都是真时,p∧q命题为真,否则为假。
注意在逻辑合取中,有时候用到“但是”一词,而非“并且”一词。比如,语句“阳光灿烂,但是在下雨”是“阳光灿烂并且在下雨”一句的另一种说法。(在自然语言中,“并且”和“但是”在意思上有微妙的不同,这里我们不关心这个细微差别。)
- Let p and p be propositions. The disjunction of p and q, denoted by p∨q, is the proposition “p or q.” The disjunction p∨q is false when both p and q are false and is true otherwise.
The use of the connective or in a disjunction corresponds to one of the two ways the word or is used in English, namely, in an inclusive way. Thus, a disjunction is true when at least one of the two propositions in it is true. Sometimes, we use or in an exclusive sense. When the exclusive or is used to connect the propositions p and q, the proposition “p or q (but not both)” is obtained. This proposition is true when p is true and q is false, and when p is false and q is true. It is false when both p and q are false and when both are true.
Let p and q be propositions. The exclusive or of p and q, denoted by p⊕q, is the proposition that is true when exactly one of p and q is true and is false otherwise.
令p和q为命题。P和q的析取式即命题“p或q”,记作p∨q。当p和q均为假时,析取命题p∨q为假,否则为真。
在析取中使用的联结词或对应于自然语言中或的两种情形之一,即可兼得的。这样,当析取中的两个命题之中至少有一个为真时,析取为真。有时我们也按不可兼得的方式使用或。当用异或来联结命题p和q时,就得到命题“p或q(但非两者)”。这一命题当p为真且q为假时为真,并且当p为假且q为真时也为真,而当p和q两者均为假或均为真时,这一命题为假。
- Let p and q be propositions. The conditional statement p->q is the proposition “if p, then q.” The conditional statement p->q is false when p is true and q is false, and true otherwise. In the conditional statement p->q, p is called the hypothesis (or antecedent or premise) and q is called the conclusion (or consequence).
在条件语句p->q中,p称为假设(前件、前提),q称为结论(后件)。
The statement p->q is called a conditional statement because p->q asserts that q is true on the conditional that p holds. A conditional statement is also called an implication.
语句p->q称为条件语句,因为p->q可以断定在条件p成立的时候q为真。条件语句也称为蕴含。
Because conditional statements play such an essential role in mathematical reasoning, a variety of terminology is used to express p->q. You will encounter most if not all of the following ways to express this conditional statement:
由于条件语句在数学推理中具有很重要的作用,所有表达p->q术语也很多。即使不是全部,你也会碰到下面几个常用的条件语句的表述方式:
“if p, then q” 如果p,则q “p implies q” p蕴含q
“if p, q” 如果p,q “p only if q” q仅当p
“p is sufficient for q” p是q的充分条件“a sufficient condition for q is p” q的充分条件是q
“q if p” q如果p “q whenever p” q每当p
“q when p” q当p “q is necessary for p” q是p的必要条件
“a necessary condition for p is q” p的必要条件是q “q follows from p” q由p得出
“q unless ¬p ” q除非¬p
Of the various ways to express the conditional statement p->q, the two that seem to cause the most confusion are “p only if q” and “q unless ¬p.” Consequently, we will provide some guidance for clearing up this confusion.
To remember that “p only if q” expresses the same thing as “if p, then q,” note that “p only if q” says that p cannot be true when q is not true. That is, the statement is false if p is true, but q is false. When p is false, q may be either true or false, because the statement says nothing about the truth value of q. Be careful not to use “q only if p” to express p->q because this is incorrect. To see this, note that the true values of “q only if p” and p->q are different when p and q have different truth values.
To remember that “q unless ¬p” expresses the same conditional statement as “if p, then q,” note that “q unless ¬p” means that if ¬p if false, then q must be true.
- Let p and q be propositions. The biconditional statement p <-> q is the proposition “p if and only if q.” The biconditional statement p <-> p is true when p and q have the same truth values, and is false otherwise. Biconditional statements are also called bi-implications.
Biconditionals :双条件语句
Bi-implications :双向蕴含
There are some other common ways to express p <-> q :
“p is necessary and sufficient for q” “p是q的充分必要条件”
“if p then q, and conversely” “如果p那么q,反之亦然”
“p iff q” “p当且仅当q”
- The proposition q->p is called the converse of p->q. The contrapositive of p->q is the proposition ¬q->¬p. The proposition ¬p->¬q is called the inverse of p->q.
A conditional statement and its contrapositive are equivalent. The converse and the inverse of a conditional statement are also equivalent, but neither is equivalent to the original conditional statement.
converse :逆命题
contrapositive :逆否命题
inverse :反命题
equivalent :等价
notation :记号
incorporate
quantified
Logic and Proofs--离散数学的更多相关文章
- Discrete Mathematics and Its Applications | 1 CHAPTER The Foundations: Logic and Proofs | 1.2 Applications of Propositional Logic
Translating English Sentences System Specifications Boolean Searches Logic Puzzles Logic Circuits
- Discrete Mathematics and Its Applications | 1 CHAPTER The Foundations: Logic and Proofs | 1.4 Predicates and Quantifiers
The statements that describe valid input are known as preconditions and the conditions that the outp ...
- Discrete Mathematics and Its Applications | 1 CHAPTER The Foundations: Logic and Proofs | 1.3 Propositional Equivalences
DEFINITION 1 A compound proposition that is always true,no matter what the truth values of the propo ...
- Discrete Mathematics and Its Applications | 1 CHAPTER The Foundations: Logic and Proofs | 1.1 Propositional Logic
propositional variables (or statement variables), letters used for propositional variables are p, q, ...
- Note for "Some Remarks on Writing Mathematical Proofs"
John M. Lee is a famous mathematician, who bears the reputation of writing the classical book " ...
- 离散数学及其应用(Discrete Mathematica With Application 7th)学习笔记 第一章
目前本人只进行到了第五章的章末补充练习,应该是从4月6号开始学习的,又是英文版,而且基本就下班回家抽2个小时左右去学,所以进度较慢. 由于本质是数学,除了一些程序处理和大计算量的问题,基本上一本草稿本 ...
- 构造 + 离散数学、重言式 - POJ 3295 Tautology
Tautology Description WFF 'N PROOF is a logic game played with dice. Each die has six faces represen ...
- QuartusII Design partion and logic lock
Design partion Design partion常用于“增益变量(QIC)”,通过Design Partition对子模块进行“逻辑分区”,在Design Partition Window中 ...
- 使用struts的logic:iterate标签遍历列表时得到显示序号
<logic:notEmpty name="sList" scope="request"> <logic:iterate id="e ...
- PADS Logic Decal、Layout Decal绘制
绘制Logic Decal图形: 1.Gate Decal与Part Type的区别: Gate Decal:即元器件在原理图中所展现出来的形状 Part Type:将元件图形.电气特性都进行定义后所 ...
随机推荐
- Linux中使用sed命令替换字符串小结
sed替换的基本语法为: sed 's/原字符串/替换字符串/' 单引号里面,s表示替换,三根斜线中间是替换的样式,特殊字符需要使用反斜线”\”进行转义,但是单引号”‘”是没有办法用反斜线”\”转义的 ...
- 给PostgreSQL添加MySQL的unix_timestamp与from_unixtime函数
MySQL的2个常用函数unix_timestamp()与from_unixtime PostgreSQL并不提供,但通过PostgreSQL强大的扩展性可以轻松的解决问题. 话说远在天边,尽在眼前, ...
- 第一模块 Python开发入门
第一章 Python语法基础 变量的定义规范 一.声明变量 name = "Alex" 二.变量的定义规则 变量名只能是字母.数字或下划线的任意组合 变量名的第一个字符不能是数字 ...
- sublime快捷键使用
sublime常用快捷键 自己觉得比较实用的sublime快捷键有: Ctrl+/..................注释 Ctrl+滚动..................字体变大.缩小 Ctrl+ ...
- 无空格字符串的break-all的性能问题
- SDKManager无法更新问题解决办法
用大连东软的镜像代理 配置步骤 启动 Android SDK Manager ,打开主界面,依次选择「Tools」.「Options...」,弹出『Android SDK Manager - Sett ...
- vue—data中变量和字符串拼接
#变量和字符串的拼接# 写项目中,遇到了这样的一个问题:怎样在一个div里面显示两个data中的数据?我的问题描述清楚了吗?... 看图吧: 这是用户最初的需求~ 这是用户后来的需求,嗯……就是 ...
- js中数组常用方法总结
操作数组 印象中数组有很多方法,系统的整理一下,放在自己家里方便回头查~ Array.map() 此方法是将数组中的每个元素调用一个提供的函数,结果作为一个新的数组返回,并没有改变原来的数组 1 2 ...
- Codeforces 977D: Divide by three, multiply by two(暴力)
题意 有nnn个无序的数,对这些数进行排列,要求ai=3×ai+1a_i=3\times a_{i+1}ai=3×ai+1或2×ai=ai+12\times a_i=a_{i+1}2×ai=ai ...
- NABCD(团队项目)
N (Need 需求) 随着时代的进步和手机迅速发展,各种软件充斥这我们的生活,在学校里,我们总为一些各种各样的群所困扰,我们需要一件工具整合信息,让我们的生活更加便利. A (Approach 做法 ...