文本分类实战(三)—— charCNN模型
1 大纲概述
文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类。总共有以下系列:
所有代码均在textClassifier仓库中。
2 数据集
数据集为IMDB 电影影评,总共有三个数据文件,在/data/rawData目录下,包括unlabeledTrainData.tsv,labeledTrainData.tsv,testData.tsv。在进行文本分类时需要有标签的数据(labeledTrainData),数据预处理如文本分类实战(一)—— word2vec预训练词向量中相似,唯一的不同是需要保留标点符号,否则模型难以收敛。预处理后的文件为/data/preprocess/labeledCharTrain.csv。
3 charCNN 模型结构
在charCNN论文Character-level Convolutional Networks for Text Classification中提出了6层卷积层 + 3层全连接层的结构,具体结构如下图:

针对不同大小的数据集提出了两种结构参数:
1)卷积层

2)全连接层

4 配置参数
import os
import time
import datetime
import csv
import json
from math import sqrt
import warnings import numpy as np
import pandas as pd
import tensorflow as tf
from sklearn.metrics import roc_auc_score, accuracy_score, precision_score, recall_score
warnings.filterwarnings("ignore")
# 参数配置 class TrainingConfig(object):
epoches = 10
evaluateEvery = 100
checkpointEvery = 100
learningRate = 0.001 class ModelConfig(object): # 该列表中子列表的三个元素分别是卷积核的数量,卷积核的高度,池化的尺寸
convLayers = [[256, 7, 4],
[256, 7, 4],
[256, 3, 4]]
# [256, 3, None],
# [256, 3, None],
# [256, 3, 3]]
fcLayers = [512]
dropoutKeepProb = 0.5 epsilon = 1e-3 # BN层中防止分母为0而加入的极小值
decay = 0.999 # BN层中用来计算滑动平均的值 class Config(object):
# 我们使用论文中提出的69个字符来表征输入数据
alphabet = "abcdefghijklmnopqrstuvwxyz0123456789-,;.!?:'\"/\\|_@#$%^&*~`+-=<>()[]{}"
# alphabet = "abcdefghijklmnopqrstuvwxyz0123456789" sequenceLength = 1014 # 字符表示的序列长度
batchSize = 128 rate = 0.8 # 训练集的比例 dataSource = "../data/preProcess/labeledCharTrain.csv" training = TrainingConfig() model = ModelConfig() config = Config()
5 训练数据生成
1) 加载数据,将所有的句子分割成字符表示
2) 构建字符-索引映射表,并保存成json的数据格式,方便在inference阶段加载使用
3)将字符转换成one-hot的嵌入形式,作为模型中embedding层的初始化值。
4) 将数据集分割成训练集和验证集
# 数据预处理的类,生成训练集和测试集 class Dataset(object):
def __init__(self, config):
self._dataSource = config.dataSource self._sequenceLength = config.sequenceLength
self._rate = config.rate self.trainReviews = []
self.trainLabels = [] self.evalReviews = []
self.evalLabels = [] self._alphabet = config.alphabet
self.charEmbedding =None self._charToIndex = {}
self._indexToChar = {} def _readData(self, filePath):
"""
从csv文件中读取数据集
""" df = pd.read_csv(filePath)
labels = df["sentiment"].tolist()
review = df["review"].tolist()
reviews = [[char for char in line if char != " "] for line in review] return reviews, labels def _reviewProcess(self, review, sequenceLength, charToIndex):
"""
将数据集中的每条评论用index表示
wordToIndex中“pad”对应的index为0
""" reviewVec = np.zeros((sequenceLength))
sequenceLen = sequenceLength # 判断当前的序列是否小于定义的固定序列长度
if len(review) < sequenceLength:
sequenceLen = len(review) for i in range(sequenceLen):
if review[i] in charToIndex:
reviewVec[i] = charToIndex[review[i]]
else:
reviewVec[i] = charToIndex["UNK"] return reviewVec def _genTrainEvalData(self, x, y, rate):
"""
生成训练集和验证集
""" reviews = []
labels = [] # 遍历所有的文本,将文本中的词转换成index表示 for i in range(len(x)):
reviewVec = self._reviewProcess(x[i], self._sequenceLength, self._charToIndex)
reviews.append(reviewVec) labels.append([y[i]]) trainIndex = int(len(x) * rate) trainReviews = np.asarray(reviews[:trainIndex], dtype="int64")
trainLabels = np.array(labels[:trainIndex], dtype="float32") evalReviews = np.asarray(reviews[trainIndex:], dtype="int64")
evalLabels = np.array(labels[trainIndex:], dtype="float32") return trainReviews, trainLabels, evalReviews, evalLabels def _genVocabulary(self, reviews):
"""
生成字符向量和字符-索引映射字典
""" chars = [char for char in self._alphabet] vocab, charEmbedding = self._getCharEmbedding(chars)
self.charEmbedding = charEmbedding self._charToIndex = dict(zip(vocab, list(range(len(vocab)))))
self._indexToChar = dict(zip(list(range(len(vocab))), vocab)) # 将词汇-索引映射表保存为json数据,之后做inference时直接加载来处理数据
with open("../data/charJson/charToIndex.json", "w", encoding="utf-8") as f:
json.dump(self._charToIndex, f) with open("../data/charJson/indexToChar.json", "w", encoding="utf-8") as f:
json.dump(self._indexToChar, f) def _getCharEmbedding(self, chars):
"""
按照one的形式将字符映射成向量
""" alphabet = ["UNK"] + [char for char in self._alphabet]
vocab = ["pad"] + alphabet
charEmbedding = []
charEmbedding.append(np.zeros(len(alphabet), dtype="float32")) for i, alpha in enumerate(alphabet):
onehot = np.zeros(len(alphabet), dtype="float32") # 生成每个字符对应的向量
onehot[i] = 1 # 生成字符嵌入的向量矩阵
charEmbedding.append(onehot) return vocab, np.array(charEmbedding) def dataGen(self):
"""
初始化训练集和验证集
""" # 初始化数据集
reviews, labels = self._readData(self._dataSource) # 初始化词汇-索引映射表和词向量矩阵
self._genVocabulary(reviews) # 初始化训练集和测试集
trainReviews, trainLabels, evalReviews, evalLabels = self._genTrainEvalData(reviews, labels, self._rate)
self.trainReviews = trainReviews
self.trainLabels = trainLabels self.evalReviews = evalReviews
self.evalLabels = evalLabels data = Dataset(config)
data.dataGen()
6 生成batch数据集
# 输出batch数据集 def nextBatch(x, y, batchSize):
"""
生成batch数据集,用生成器的方式输出
""" perm = np.arange(len(x))
np.random.shuffle(perm)
x = x[perm]
y = y[perm] numBatches = len(x) // batchSize for i in range(numBatches):
start = i * batchSize
end = start + batchSize
batchX = np.array(x[start: end], dtype="int64")
batchY = np.array(y[start: end], dtype="float32") yield batchX, batchY
7 charCNN模型
在charCNN 模型中我们引入了BN层,但是效果并不明显,甚至存在一些收敛问题,待之后去探讨。
# 定义char-CNN分类器 class CharCNN(object):
"""
char-CNN用于文本分类
"""
def __init__(self, config, charEmbedding):
# placeholders for input, output and dropuot
self.inputX = tf.placeholder(tf.int32, [None, config.sequenceLength], name="inputX")
self.inputY = tf.placeholder(tf.float32, [None, 1], name="inputY")
self.dropoutKeepProb = tf.placeholder(tf.float32, name="dropoutKeepProb")
self.isTraining = tf.placeholder(tf.bool, name="isTraining") self.epsilon = config.model.epsilon
self.decay = config.model.decay # 字符嵌入
with tf.name_scope("embedding"): # 利用one-hot的字符向量作为初始化词嵌入矩阵
self.W = tf.Variable(tf.cast(charEmbedding, dtype=tf.float32, name="charEmbedding") ,name="W")
# 获得字符嵌入
self.embededChars = tf.nn.embedding_lookup(self.W, self.inputX)
# 添加一个通道维度
self.embededCharsExpand = tf.expand_dims(self.embededChars, -1) for i, cl in enumerate(config.model.convLayers):
print("开始第" + str(i + 1) + "卷积层的处理")
# 利用命名空间name_scope来实现变量名复用
with tf.name_scope("convLayer-%s"%(i+1)):
# 获取字符的向量长度
filterWidth = self.embededCharsExpand.get_shape()[2].value # filterShape = [height, width, in_channels, out_channels]
filterShape = [cl[1], filterWidth, 1, cl[0]] stdv = 1 / sqrt(cl[0] * cl[1]) # 初始化w和b的值
wConv = tf.Variable(tf.random_uniform(filterShape, minval=-stdv, maxval=stdv),
dtype='float32', name='w')
bConv = tf.Variable(tf.random_uniform(shape=[cl[0]], minval=-stdv, maxval=stdv), name='b') # w_conv = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.05), name="w")
# b_conv = tf.Variable(tf.constant(0.1, shape=[cl[0]]), name="b")
# 构建卷积层,可以直接将卷积核的初始化方法传入(w_conv)
conv = tf.nn.conv2d(self.embededCharsExpand, wConv, strides=[1, 1, 1, 1], padding="VALID", name="conv")
# 加上偏差
hConv = tf.nn.bias_add(conv, bConv)
# 可以直接加上relu函数,因为tf.nn.conv2d事实上是做了一个卷积运算,然后在这个运算结果上加上偏差,再导入到relu函数中
hConv = tf.nn.relu(hConv) # with tf.name_scope("batchNormalization"):
# hConvBN = self._batchNorm(hConv) if cl[-1] is not None:
ksizeShape = [1, cl[2], 1, 1]
hPool = tf.nn.max_pool(hConv, ksize=ksizeShape, strides=ksizeShape, padding="VALID", name="pool")
else:
hPool = hConv print(hPool.shape) # 对维度进行转换,转换成卷积层的输入维度
self.embededCharsExpand = tf.transpose(hPool, [0, 1, 3, 2], name="transpose")
print(self.embededCharsExpand)
with tf.name_scope("reshape"):
fcDim = self.embededCharsExpand.get_shape()[1].value * self.embededCharsExpand.get_shape()[2].value
self.inputReshape = tf.reshape(self.embededCharsExpand, [-1, fcDim]) weights = [fcDim] + config.model.fcLayers for i, fl in enumerate(config.model.fcLayers):
with tf.name_scope("fcLayer-%s"%(i+1)):
print("开始第" + str(i + 1) + "全连接层的处理")
stdv = 1 / sqrt(weights[i]) # 定义全连接层的初始化方法,均匀分布初始化w和b的值
wFc = tf.Variable(tf.random_uniform([weights[i], fl], minval=-stdv, maxval=stdv), dtype="float32", name="w")
bFc = tf.Variable(tf.random_uniform(shape=[fl], minval=-stdv, maxval=stdv), dtype="float32", name="b") # w_fc = tf.Variable(tf.truncated_normal([weights[i], fl], stddev=0.05), name="W")
# b_fc = tf.Variable(tf.constant(0.1, shape=[fl]), name="b") self.fcInput = tf.nn.relu(tf.matmul(self.inputReshape, wFc) + bFc) with tf.name_scope("dropOut"):
self.fcInputDrop = tf.nn.dropout(self.fcInput, self.dropoutKeepProb) self.inputReshape = self.fcInputDrop with tf.name_scope("outputLayer"):
stdv = 1 / sqrt(weights[-1])
# 定义隐层到输出层的权重系数和偏差的初始化方法
# w_out = tf.Variable(tf.truncated_normal([fc_layers[-1], num_classes], stddev=0.1), name="W")
# b_out = tf.Variable(tf.constant(0.1, shape=[num_classes]), name="b") wOut = tf.Variable(tf.random_uniform([config.model.fcLayers[-1], 1], minval=-stdv, maxval=stdv), dtype="float32", name="w")
bOut = tf.Variable(tf.random_uniform(shape=[1], minval=-stdv, maxval=stdv), name="b")
# tf.nn.xw_plus_b就是x和w的乘积加上b
self.predictions = tf.nn.xw_plus_b(self.inputReshape, wOut, bOut, name="predictions")
# 进行二元分类
self.binaryPreds = tf.cast(tf.greater_equal(self.predictions, 0.0), tf.float32, name="binaryPreds") with tf.name_scope("loss"):
# 定义损失函数,对预测值进行softmax,再求交叉熵。 losses = tf.nn.sigmoid_cross_entropy_with_logits(logits=self.predictions, labels=self.inputY)
self.loss = tf.reduce_mean(losses) def _batchNorm(self, x):
# BN层代码实现
gamma = tf.Variable(tf.ones([x.get_shape()[3].value]))
beta = tf.Variable(tf.zeros([x.get_shape()[3].value])) self.popMean = tf.Variable(tf.zeros([x.get_shape()[3].value]), trainable=False, name="popMean")
self.popVariance = tf.Variable(tf.ones([x.get_shape()[3].value]), trainable=False, name="popVariance") def batchNormTraining():
# 一定要使用正确的维度确保计算的是每个特征图上的平均值和方差而不是整个网络节点上的统计分布值
batchMean, batchVariance = tf.nn.moments(x, [0, 1, 2], keep_dims=False) decay = 0.99
trainMean = tf.assign(self.popMean, self.popMean*self.decay + batchMean*(1 - self.decay))
trainVariance = tf.assign(self.popVariance, self.popVariance*self.decay + batchVariance*(1 - self.decay)) with tf.control_dependencies([trainMean, trainVariance]):
return tf.nn.batch_normalization(x, batchMean, batchVariance, beta, gamma, self.epsilon) def batchNormInference():
return tf.nn.batch_normalization(x, self.popMean, self.popVariance, beta, gamma, self.epsilon) batchNormalizedOutput = tf.cond(self.isTraining, batchNormTraining, batchNormInference)
return tf.nn.relu(batchNormalizedOutput)
8 性能指标函数
输出分类问题的常用指标。
# 定义性能指标函数 def mean(item):
return sum(item) / len(item) def genMetrics(trueY, predY, binaryPredY):
"""
生成acc和auc值
""" auc = roc_auc_score(trueY, predY)
accuracy = accuracy_score(trueY, binaryPredY)
precision = precision_score(trueY, binaryPredY, average='macro')
recall = recall_score(trueY, binaryPredY, average='macro') return round(accuracy, 4), round(auc, 4), round(precision, 4), round(recall, 4)
9 训练模型
在训练时,我们定义了tensorBoard的输出,并定义了两种模型保存的方法。
# 训练模型 # 生成训练集和验证集
trainReviews = data.trainReviews
trainLabels = data.trainLabels
evalReviews = data.evalReviews
evalLabels = data.evalLabels charEmbedding = data.charEmbedding # 定义计算图
with tf.Graph().as_default(): session_conf = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False)
session_conf.gpu_options.allow_growth=True
session_conf.gpu_options.per_process_gpu_memory_fraction = 0.9 # 配置gpu占用率 sess = tf.Session(config=session_conf) # 定义会话
with sess.as_default(): cnn = CharCNN(config, charEmbedding)
globalStep = tf.Variable(0, name="globalStep", trainable=False)
# 定义优化函数,传入学习速率参数
optimizer = tf.train.RMSPropOptimizer(config.training.learningRate)
# 计算梯度,得到梯度和变量
gradsAndVars = optimizer.compute_gradients(cnn.loss)
# 将梯度应用到变量下,生成训练器
trainOp = optimizer.apply_gradients(gradsAndVars, global_step=globalStep) # 用summary绘制tensorBoard
gradSummaries = []
for g, v in gradsAndVars:
if g is not None:
tf.summary.histogram("{}/grad/hist".format(v.name), g)
tf.summary.scalar("{}/grad/sparsity".format(v.name), tf.nn.zero_fraction(g)) outDir = os.path.abspath(os.path.join(os.path.curdir, "summarys"))
print("Writing to {}\n".format(outDir)) lossSummary = tf.summary.scalar("trainLoss", cnn.loss) summaryOp = tf.summary.merge_all() trainSummaryDir = os.path.join(outDir, "train")
trainSummaryWriter = tf.summary.FileWriter(trainSummaryDir, sess.graph) evalSummaryDir = os.path.join(outDir, "eval")
evalSummaryWriter = tf.summary.FileWriter(evalSummaryDir, sess.graph) # 初始化所有变量
saver = tf.train.Saver(tf.global_variables(), max_to_keep=5) # 保存模型的一种方式,保存为pb文件
builder = tf.saved_model.builder.SavedModelBuilder("../model/charCNN/savedModel")
sess.run(tf.global_variables_initializer()) def trainStep(batchX, batchY):
"""
训练函数
"""
feed_dict = {
cnn.inputX: batchX,
cnn.inputY: batchY,
cnn.dropoutKeepProb: config.model.dropoutKeepProb,
cnn.isTraining: True
}
_, summary, step, loss, predictions, binaryPreds = sess.run(
[trainOp, summaryOp, globalStep, cnn.loss, cnn.predictions, cnn.binaryPreds],
feed_dict)
timeStr = datetime.datetime.now().isoformat()
acc, auc, precision, recall = genMetrics(batchY, predictions, binaryPreds)
print("{}, step: {}, loss: {}, acc: {}, auc: {}, precision: {}, recall: {}".format(timeStr, step, loss, acc, auc, precision, recall))
trainSummaryWriter.add_summary(summary, step) def devStep(batchX, batchY):
"""
验证函数
"""
feed_dict = {
cnn.inputX: batchX,
cnn.inputY: batchY,
cnn.dropoutKeepProb: 1.0,
cnn.isTraining: False
}
summary, step, loss, predictions, binaryPreds = sess.run(
[summaryOp, globalStep, cnn.loss, cnn.predictions, cnn.binaryPreds],
feed_dict) acc, auc, precision, recall = genMetrics(batchY, predictions, binaryPreds) evalSummaryWriter.add_summary(summary, step) return loss, acc, auc, precision, recall for i in range(config.training.epoches):
# 训练模型
print("start training model")
for batchTrain in nextBatch(trainReviews, trainLabels, config.batchSize):
trainStep(batchTrain[0], batchTrain[1]) currentStep = tf.train.global_step(sess, globalStep)
if currentStep % config.training.evaluateEvery == 0:
print("\nEvaluation:") losses = []
accs = []
aucs = []
precisions = []
recalls = [] for batchEval in nextBatch(evalReviews, evalLabels, config.batchSize):
loss, acc, auc, precision, recall = devStep(batchEval[0], batchEval[1])
losses.append(loss)
accs.append(acc)
aucs.append(auc)
precisions.append(precision)
recalls.append(recall) time_str = datetime.datetime.now().isoformat()
print("{}, step: {}, loss: {}, acc: {}, auc: {}, precision: {}, recall: {}".format(time_str, currentStep, mean(losses),
mean(accs), mean(aucs), mean(precisions),
mean(recalls))) if currentStep % config.training.checkpointEvery == 0:
# 保存模型的另一种方法,保存checkpoint文件
path = saver.save(sess, "../model/charCNN/model/my-model", global_step=currentStep)
print("Saved model checkpoint to {}\n".format(path)) inputs = {"inputX": tf.saved_model.utils.build_tensor_info(cnn.inputX),
"keepProb": tf.saved_model.utils.build_tensor_info(cnn.dropoutKeepProb)} outputs = {"binaryPreds": tf.saved_model.utils.build_tensor_info(cnn.binaryPreds)} prediction_signature = tf.saved_model.signature_def_utils.build_signature_def(inputs=inputs, outputs=outputs,
method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME)
legacy_init_op = tf.group(tf.tables_initializer(), name="legacy_init_op")
builder.add_meta_graph_and_variables(sess, [tf.saved_model.tag_constants.SERVING],
signature_def_map={"predict": prediction_signature}, legacy_init_op=legacy_init_op) builder.save()
文本分类实战(三)—— charCNN模型的更多相关文章
- 文本分类实战(八)—— Transformer模型
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...
- 文本分类实战(七)—— Adversarial LSTM模型
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...
- 文本分类实战(六)—— RCNN模型
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...
- 文本分类实战(五)—— Bi-LSTM + Attention模型
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...
- 文本分类实战(四)—— Bi-LSTM模型
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...
- 文本分类实战(二)—— textCNN 模型
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...
- 文本分类实战(十)—— BERT 预训练模型
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...
- 文本分类实战(九)—— ELMO 预训练模型
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...
- Python 1行代码实现文本分类(实战笔记),含代码详细说明及运行结果
Python 1行代码实现文本分类(实战笔记),含代码详细说明及运行结果 一.详细说明及代码 tc.py =============================================== ...
随机推荐
- 带着新人学springboot的应用08(springboot+jpa的整合)
这一节的内容比较简单,是springboot和jpa的简单整合,jpa默认使用hibernate,所以本质就是springboot和hibernate的整合. 说实话,听别人都说spring data ...
- 带着萌新看springboot源码8(spring ioc源码 完)
上一节说到实例化了所有的单实例Bean,后面还有一步遍历 12.完成容器刷新(finishRefresh();) 那个和生命周期有关的后置处理器类型是LifecycleProcessor:监听器原理我 ...
- C++中 引用&与取地址&的区别
微信公众号[程序员江湖] 作者黄小斜,斜杠青年,某985硕士,阿里 Java 研发工程师,于 2018 年秋招拿到 BAT 头条.网易.滴滴等 8 个大厂 offer,目前致力于分享这几年的学习经验. ...
- centos7忘记root密码
开机时狂点方向键下(Windows还原习惯了),或者狂点别的键.目的为了不让它进入系统. 方向键移动光标定位在第一行,按e编辑它. 在新界面找到linux16开头的行.→光标到 ro 改成rw ...
- 3分钟学会如何调度运营海量Redis系统
本文由云+社区发表 作者:冯伟源 作者:冯伟源,高级工程师,腾讯云Redis系统运维负责人.6年DBA经验,一直从事SQL优化.实例调优.数据库架构.海量数据库集群运维.运营平台建设和管理等工作.为 ...
- 强大的jupyter,python开发者的福音
jupyter是一种交互式计算和开发环境的笔记,ipython命令行比原生的python命令行更加友好和高效,还可以运行web版的界面,支持多语言,输出图形.音频.视频等功能. 一.安装 pip3 i ...
- [java]final关键字的几种用法
在java的关键字中,static和final是两个我们必须掌握的关键字.不同于其他关键字,他们都有多种用法,而且在一定环境下使用,可以提高程序的运行性能,优化程序的结构.下面我们来了解一下final ...
- Phpstudy升级到Mysql8
之前一直用的mysql5.5,最近发现Mysql8更新了很多新特性以及查询效率的提升,觉得很有必要更新下开发版本,好,废话不多说: 1.下载安装包,下载地址:mysql8.0 .如果你想要下载其它版 ...
- Java开发笔记(十二)布尔变量论道与或非
在编程语言的设计之初,它们除了可以进行数学计算,还常常用于逻辑推理和条件判断.为了实现逻辑判断的功能,Java引入了一种布尔类型boolean,用来表示“真”和“假”.该类型的变量只允许两个取值,即t ...
- WEB前端常见面试题汇总:(一)
1.JS找字符串中出现最多的字符 例如:求字符串'nininihaoa'中出现次数最多字符 方法一: var str = "nininihaoa"; var o = {}; for ...