Make the most of your data

Data augmentation

加载图像后,对图像做一些变化,这些变换不改变图像的标签。

通过各种变换人为的增大数据集,可以避免过拟合提高模型的性能,最简单的数据增强就是横向翻转

1. horizontal flips

2. random crops and scales

对图像进行随机的尺度和位置上选择图像截图;缩放到CNN需要的图像大小最为新的数据集。

使用随机裁剪和缩放来训练模型的时候,用整幅图像来测试算法并不合理,因此在测试阶段,要准备一些

固定的截图,并用这些数据来测试算法,非常常见的作法是选取图像的10个截图(左上角、右上角、下面两个角和中间部分的截图,并把这五个图进行翻转)。

Resnet在测试阶段进行多尺度的变换

3.color jitter

一种简单的方法就是改变对比度

复杂的方法就是:对训练集所有像素做主成分分析(PCA),每个像素是一个长度为3的向量(RGB),当我们遍历所有像素后,得到主要颜色有哪些,然后PCA给出颜色空间中3个主要的颜色方向,表明数据集中颜色在哪个方向上变换最为剧烈,做数据增强,根据这些颜色的主成分来决定新产生的颜色。

4.add extra noise

增加随机噪声扰乱网络,包括BN、Minibatch,dropout弱化了噪声的影响,在BN中保留了均值。

在前向传播时随机增加噪声,在测试的时候弱化噪声影响。

Transfer learning

对于数据量较小,只能把手头的网络当作一个特征提取器,imagenet最后一层是softmax,用一个满足自己需求的线性分类器来代替这个softmax, 其他层不变,只训练这个顶层,类似于只训练一个线性分类器。

类似于:你只要把训练集产生的所有特征存在硬盘上。

数据量较多的话:可以训练更复杂的网络,在最后几层去训练,得到feature map,最后的几层重新初始化,前面的freeze部分不变初始化。

微调finetuning的建议:

第一种是学习率为0的固定层。

第二种是从头开始初始化的层,一般学习率高一些,1/10吧。

第三种是预训练网络中的中间层,要在优化和finetuning中学习,这些中间层的学习率很小,1/100.

微调的muti-stages 建议:

第一步是把网络固定,只训练最后几层,当最后几层快要收敛后,再对这些(包括要训练的中间层进行fineturing)。

由于刚刚初始化,所以梯度会很大,可以先开始固定中间层,等着最后层收敛;或者两个阶段使用不同的学习率。

微调这种迁移学习,当原来网络是类似类型的数据训练出来的时候,微调效果高。

迁移学习的建议

对于MRI数据集,高阶特征可能是针对某种图像的分类,低阶特征是边缘一类的特征,这些低阶特征很容易迁移到非图像数据上面去,

All about convolutions

堆叠两个3*3的卷积,得到一个神经元等于一个5*5的卷积;

堆叠三个3*3的卷积,得到一个神经元等于一个7*7的卷积;

一个7*7的卷积和堆叠三个3*3的卷积在参数规模上的区别:

3*3的三个卷积更好。

3*3的三个卷积比大卷积更少的计算。

比较神奇的结构,1*1的卷积减小了深度上的体积,在空间上有相同的尺寸,要做一个3*3的降维卷积

再做一个1*1的卷积回到原来的深度。

作用:

1*1的卷积减小深度上的维度叫做“bottleneck”,就像将一个多层的全连接层遍历每个数据通道

使用这种结构,可以获得更小的参数规模,参数的个数和计算量直接相关,多层瓶颈结构计算起来快得多,并且有更好的非线性。

卷积的计算

How to arrange them

How to compute them fast

Implementation details

(Review cs231n) CNN in Practice的更多相关文章

  1. (Review cs231n) Object Detection

    目标:我们有几个类别,然后我们要在这张图中找到这些类的所有实例 解决思路:是否可以按照回归的思路进行求解呢? 但是受限制于确定的种类输出问题. 方法:分类和回归是解决问题的两个套路,我们现在对于目标的 ...

  2. (Review cs231n) ConvNet

    概念 神经网络的深度和数据据体的深度(图像的通道数channels)要主要区分. 输入 1.得到一些数据,作为网络的输入. 2.在CNN中有filter,the size of filter is s ...

  3. (Review cs231n) BN and Activation Function

    CNN网络的迁移学习(transfer learning) 1.在ImageNet上进行网络的预训练 2.将最上方的层,即分类器移除,然后将整个神经网络看成是固定特征提取器来训练,将这个特征提取器置于 ...

  4. (Review cs231n) Spatial Localization and Detection(classification and localization)

     重在图像的定位和检测的内容. 一张图片中只有一种给定类别标签的对象,定位则是图像中有对象框:再这些类中,每一个训练目标都有一个类和许多的图像内部对应类的位置选框. 猜想的仅是类标签,不如说它们是位置 ...

  5. (Review cs231n) Training of Neural Network2

    FFDNet---matlab 调用并批处理 format compact; global sigmas; % input noise level or input noise level map a ...

  6. (Review cs231n) Optimized Methods

    Mini-batch SGD的步骤: 1.Sample a batch of data 2.Forward prop it through the graph,get loss 3.backprop ...

  7. (Review cs231n) The Gradient Calculation of Neural Network

    前言:牵扯到较多的数学问题 原始的评分函数: 两层神经网络,经过一个激活函数: 如图所示,中间隐藏层的个数的各数为超参数: 和SVM,一个单独的线性分类器需要处理不同朝向的汽车,但是它并不能处理不同颜 ...

  8. (Review cs231n) Gradient Vectorized

    注意: 1.每次更新,都要进行一次完整的forward和backward,想要进行更新,需要梯度,所以你需要前馈样本,马上反向求导,得到梯度,然后根据求得的梯度进行权值微调,完成权值更新. 2.前馈得 ...

  9. (Review cs231n) Gradient Calculation and Backward

    ---恢复内容开始--- 昨日之补充web. 求解下图的梯度的流动,反向更新参数的过程,表示为 输入与损失梯度的关系,借助链式法则,当前输入与损失之间的梯度关系为局部梯度乘以后一层的梯度. ---恢复 ...

随机推荐

  1. CSS3_盒子背景

    盒子背景 盒子背景:content    padding    特殊的 boder 背景 背景绘制 从 padding 开始绘制 背景裁剪 background-clip(默认值 border-box ...

  2. Go语言基础之流程控制

    Go语言基础之流程控制 流程控制是每种编程语言控制逻辑走向和执行次序的重要部分,流程控制可以说是一门语言的“经脉”. Go语言中最常用额流程控制有if和for,而switch和goto主要是为了简化代 ...

  3. linux中安装和配置 jdk

    01.去官网下载指定的jdk 02.使用xftp把下载好的文件 传递到 linux指定文件夹中03.进入指定的文件夹输入tar -zxvf 文件名称04.发现文件 05.进入文件cd jdk1.8.0 ...

  4. OO第一单元总结

    OO第一单元作业总结 一.前言 开学四周,不知不觉已经做了三次OO作业.事实上,每一次作业对我来说都是很大的挑战,需要花费大量的时间和精力来学习. 虽然学得很艰苦,但最后还是连滚带爬地完成了.(好惨一 ...

  5. Linux系统的命令应该如何记?

    Linux入门篇: 很多刚入门的同学,就像无头的苍蝇一样,到处找视频.书籍.网站帖子之类的学习方式,视频虽然讲得详细,但是时间的投入也是巨大的,播放时间,练习时间,加起来很吓人,其实啊很少有人能坚持把 ...

  6. centos7 部署vnc

    不做过多介绍了,下面直接记录下centos7系统下安装配置vncserver的操作记录 0)更改为启动桌面或命令行模式 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 ...

  7. [dev] 刷HHKP的一般流程及常见错误(多图慎点)

    ( 为什么打了个dev的tag?development不用键盘,难道用鼠标??) 嗯呐,我有个HHKP,你看: 好不好看? 脏不脏? 接下来讲一下,我是怎么刷它,要看完哝,不然拆坏了不要怪我. 本来我 ...

  8. mock server 实现get方法的接口(二)

    mock server 实现get方法的接口(二) 下面是实现查询品牌的接口demo: 1.当response数据量小的时候,可以直接使用json, mock会自动设置headers为applicat ...

  9. linux基础命令--rmdir 删除空目录

    描述 rmdir命令用于删除空目录. 语法 rmdir [OPTION]... DIRECTORY... 选项列表 选项(常用的已加粗) 说明 --ignore-fail-on-non-empty 忽 ...

  10. [转]Jmeter + Grafana + InfluxDB 性能测试监控

    https://www.cnblogs.com/yyhh/p/5990228.html Jmeter + Grafana + InfluxDB 性能测试监控 效果不错