spark mllib prefixspan demo
./bin/spark-submit ~/src_test/prefix_span_test.py
source code:
import os
import sys
from pyspark.mllib.fpm import PrefixSpan
from pyspark import SparkContext
from pyspark import SparkConf sc = SparkContext("local","testing")
print(sc)
data = [
[['a'],["a", "b", "c"], ["a","c"],["d"],["c", "f"]],
[["a","d"], ["c"],["b", "c"], ["a", "e"]],
[["e", "f"], ["a", "b"], ["d","f"],["c"],["b"]],
[["e"], ["g"],["a", "f"],["c"],["b"],["c"]]
]
rdd = sc.parallelize(data, 2)
model = PrefixSpan.train(rdd, 0.5,4)
result = sorted(model.freqSequences().collect())
print("*"*88)
print(result)
print("*"*88)
output:
****************************************************************************************
[FreqSequence(sequence=[['a']], freq=4), FreqSequence(sequence=[['a'], ['a']], freq=2), FreqSequence(sequence=[['a'], ['b']], freq=4), FreqSequence(sequence=[['a'], ['b'], ['a']], freq=2), FreqSequence(sequence=[['a'], ['b'], ['c']], freq=2), FreqSequence(sequence=[['a'], ['b', 'c']], freq=2), FreqSequence(sequence=[['a'], ['b', 'c'], ['a']], freq=2), FreqSequence(sequence=[['a'], ['c']], freq=4), FreqSequence(sequence=[['a'], ['c'], ['a']], freq=2), FreqSequence(sequence=[['a'], ['c'], ['b']], freq=3), FreqSequence(sequence=[['a'], ['c'], ['c']], freq=3), FreqSequence(sequence=[['a'], ['d']], freq=2), FreqSequence(sequence=[['a'], ['d'], ['c']], freq=2), FreqSequence(sequence=[['a'], ['f']], freq=2), FreqSequence(sequence=[['b']], freq=4), FreqSequence(sequence=[['b'], ['a']], freq=2), FreqSequence(sequence=[['b'], ['c']], freq=3), FreqSequence(sequence=[['b'], ['d']], freq=2), FreqSequence(sequence=[['b'], ['d'], ['c']], freq=2), FreqSequence(sequence=[['b'], ['f']], freq=2), FreqSequence(sequence=[['b', 'a']], freq=2), FreqSequence(sequence=[['b', 'a'], ['c']], freq=2), FreqSequence(sequence=[['b', 'a'], ['d']], freq=2), FreqSequence(sequence=[['b', 'a'], ['d'], ['c']], freq=2), FreqSequence(sequence=[['b', 'a'], ['f']], freq=2), FreqSequence(sequence=[['b', 'c']], freq=2), FreqSequence(sequence=[['b', 'c'], ['a']], freq=2), FreqSequence(sequence=[['c']], freq=4), FreqSequence(sequence=[['c'], ['a']], freq=2), FreqSequence(sequence=[['c'], ['b']], freq=3), FreqSequence(sequence=[['c'], ['c']], freq=3), FreqSequence(sequence=[['d']], freq=3), FreqSequence(sequence=[['d'], ['b']], freq=2), FreqSequence(sequence=[['d'], ['c']], freq=3), FreqSequence(sequence=[['d'], ['c'], ['b']], freq=2), FreqSequence(sequence=[['e']], freq=3), FreqSequence(sequence=[['e'], ['a']], freq=2), FreqSequence(sequence=[['e'], ['a'], ['b']], freq=2), FreqSequence(sequence=[['e'], ['a'], ['c']], freq=2), FreqSequence(sequence=[['e'], ['a'], ['c'], ['b']], freq=2), FreqSequence(sequence=[['e'], ['b']], freq=2), FreqSequence(sequence=[['e'], ['b'], ['c']], freq=2), FreqSequence(sequence=[['e'], ['c']], freq=2), FreqSequence(sequence=[['e'], ['c'], ['b']], freq=2), FreqSequence(sequence=[['e'], ['f']], freq=2), FreqSequence(sequence=[['e'], ['f'], ['b']], freq=2), FreqSequence(sequence=[['e'], ['f'], ['c']], freq=2), FreqSequence(sequence=[['e'], ['f'], ['c'], ['b']], freq=2), FreqSequence(sequence=[['f']], freq=3), FreqSequence(sequence=[['f'], ['b']], freq=2), FreqSequence(sequence=[['f'], ['b'], ['c']], freq=2), FreqSequence(sequence=[['f'], ['c']], freq=2), FreqSequence(sequence=[['f'], ['c'], ['b']], freq=2)]
****************************************************************************************
spark mllib prefixspan demo的更多相关文章
- 在Java Web中使用Spark MLlib训练的模型
PMML是一种通用的配置文件,只要遵循标准的配置文件,就可以在Spark中训练机器学习模型,然后再web接口端去使用.目前应用最广的就是基于Jpmml来加载模型在javaweb中应用,这样就可以实现跨 ...
- 十二、spark MLlib的scala示例
简介 spark MLlib官网:http://spark.apache.org/docs/latest/ml-guide.html mllib是spark core之上的算法库,包含了丰富的机器学习 ...
- Spark MLlib + maven + scala 试水~
使用SGD算法逻辑回归的垃圾邮件分类器 package com.oreilly.learningsparkexamples.scala import org.apache.spark.{SparkCo ...
- Spark MLlib之线性回归源代码分析
1.理论基础 线性回归(Linear Regression)问题属于监督学习(Supervised Learning)范畴,又称分类(Classification)或归纳学习(Inductive Le ...
- spark mllib docs,MLlib: RDD-based API
MLlib: RDD-based API This page documents sections of the MLlib guide for the RDD-based API (the spar ...
- spark mllib lda 中文分词、主题聚合基本样例
github https://github.com/cclient/spark-lda-example spark mllib lda example 官方示例较为精简 在官方lda示例的基础上,给合 ...
- Spark MLlib中KMeans聚类算法的解析和应用
聚类算法是机器学习中的一种无监督学习算法,它在数据科学领域应用场景很广泛,比如基于用户购买行为.兴趣等来构建推荐系统. 核心思想可以理解为,在给定的数据集中(数据集中的每个元素有可被观察的n个属性), ...
- Spark MLlib - LFW
val path = "/usr/data/lfw-a/*" val rdd = sc.wholeTextFiles(path) val first = rdd.first pri ...
- 《Spark MLlib机器学习实践》内容简介、目录
http://product.dangdang.com/23829918.html Spark作为新兴的.应用范围最为广泛的大数据处理开源框架引起了广泛的关注,它吸引了大量程序设计和开发人员进行相 ...
随机推荐
- pt和px区别 pt是逻辑像素,px是物理像素
pt和px区别 pt是逻辑像素,px是物理像素字体大小的设置单位,常用的有2种:px.pt.这两个有什么区别呢?先搞清基本概念:px就是表示pixel,像素,是屏幕上显示数据的最基本的点:pt就是po ...
- 7个优秀的国内外移动端web框架(转)
淘宝SUI Mobile框架 (light7框架 官网:http://www.light7.cn/)官网地址:http://m.sui.taobao.org/ SUI Mobile 是一套基于 F ...
- go区块链学习教程之iris框架mvc架构
在Iris框架中,封装了mvc包作为对mvc架构的支持,方便开发者遵循mvc的开发原则进行开发. iris框架支持请求数据.模型.持久数据分层处理,并支持各层级模块代码绑定执行. MVC即:model ...
- centos7多网卡配置bond0 (mode6无需交换机做配置)
1.执行setup命令-->网络配置-->本例中四块网卡. 2.ifconfig列出四块网卡. 3.我们的目标,绑定eth0和eth1两块网卡作为公网网卡,ip设置为192.168.0.5 ...
- vmware-tools安装——实用
1.vmware中点击安装或重新安装vmware-tools 2.在root终端解压并移动安装文件:tar -xvf VMwareTools-9.9.0-2304977.tar.gz -C /tmp ...
- psql 存储过程
--添加人员和虹膜注册信息 CREATE OR REPLACE FUNCTION AddPersonInfoAndIrisEnrollInfo(personName character, workSn ...
- 第一章 Python程序语言简介
第一节 Python概述 1. 什么是Python Python是一种 解释型.面向对象.动态数据类型 的高级程序设计语言.由Guido van Rossum与1989年发明,第一个公开发行版本发行于 ...
- 2019/4/17 wen 注解、垃圾回收、多线程
- 树形插件zTree与组织插件jOrgChart交互
<html> <head> <title>组织架构</title> <meta http-equiv="content-type&quo ...
- 前端基础面试题(JS部分)
1.几种基本数据类型?复杂数据类型?值类型和引用数据类型?堆栈数据结构? 基本数据类型:Undefined.Null.Boolean.Number.String 值类型:数值.布尔值.null.und ...