P4717 【模板】快速沃尔什变换
思路
FWT的模板
FWT解决这样的卷积
\]
\(\otimes\)可能是and,or,xor等位运算
几个式子
FWTand:
\]
IFWTand:
\]
FWTor:
\]
IFWTor:
\]
FWTxor:
y=a[k+len]\\
a[k]=x+y\\
a[k+len]=x-y
\]
IFWTxor:
y=a[k+len]\\
a[k]=\frac{x+y}{2}\\
a[k+len]=\frac{x-y}{2}
\]
代码
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int inv2 ,a[140000],b[140000],c[140000],n;
const int MOD = 998244353;
int pow(int a,int b){
int ans=1;
while(b){
if(b&1)
ans=(1LL*ans*a)%MOD;
a=(1LL*a*a)%MOD;
b>>=1;
}
return ans;
}
void FWTor(int *a,int n){
for(int i=2;i<=n;i<<=1){
int len=i/2;
for(int j=0;j<n;j+=i)
for(int k=j;k<j+len;k++)
a[k+len]=(a[k+len]+a[k])%MOD;
}
}
void IFWTor(int *a,int n){
for(int i=2;i<=n;i<<=1){
int len=i/2;
for(int j=0;j<n;j+=i)
for(int k=j;k<j+len;k++)
a[k+len]=(a[k+len]-a[k]+MOD)%MOD;
}
}
void FWTand(int *a,int n){
for(int i=2;i<=n;i<<=1){
int len=i/2;
for(int j=0;j<n;j+=i)
for(int k=j;k<j+len;k++)
a[k]=(a[k]+a[k+len])%MOD;
}
}
void IFWTand(int *a,int n){
for(int i=2;i<=n;i<<=1){
int len=i/2;
for(int j=0;j<n;j+=i)
for(int k=j;k<j+len;k++)
a[k]=(a[k]-a[k+len]+MOD)%MOD;
}
}
void FWTxor(int *a,int n){
for(int i=2;i<=n;i<<=1){
int len=i/2;
for(int j=0;j<n;j+=i)
for(int k=j;k<j+len;k++){
int x=a[k],y=a[k+len];
a[k]=(x+y)%MOD;
a[k+len]=(x-y+MOD)%MOD;
}
}
}
void IFWTxor(int *a,int n){
for(int i=2;i<=n;i<<=1){
int len=i/2;
for(int j=0;j<n;j+=i)
for(int k=j;k<j+len;k++){
int x=a[k],y=a[k+len];
a[k]=1LL*(x+y)%MOD*inv2%MOD;
a[k+len]=1LL*(x-y+MOD)%MOD*inv2%MOD;
}
}
}
int main(){
inv2 = pow(2,MOD-2);
scanf("%d",&n);
for(int i=0;i<(1<<n);i++)
scanf("%d",&a[i]);
for(int i=0;i<(1<<n);i++)
scanf("%d",&b[i]);
int midlen=1;
while(midlen<(1<<n))
midlen<<=1;
FWTor(a,midlen);
FWTor(b,midlen);
for(int i=0;i<midlen;i++)
c[i]=(1LL*a[i]*b[i])%MOD;
IFWTor(a,midlen);
IFWTor(b,midlen);
IFWTor(c,midlen);
for(int i=0;i<(1<<n);i++)
printf("%d ",c[i]);
printf("\n");
FWTand(a,midlen);
FWTand(b,midlen);
for(int i=0;i<midlen;i++)
c[i]=(1LL*a[i]*b[i])%MOD;
IFWTand(a,midlen);
IFWTand(b,midlen);
IFWTand(c,midlen);
for(int i=0;i<(1<<n);i++)
printf("%d ",c[i]);
printf("\n");
FWTxor(a,midlen);
FWTxor(b,midlen);
for(int i=0;i<midlen;i++)
c[i]=(1LL*a[i]*b[i])%MOD;
IFWTxor(a,midlen);
IFWTxor(b,midlen);
IFWTxor(c,midlen);
for(int i=0;i<(1<<n);i++)
printf("%d ",c[i]);
printf("\n");
return 0;
}
P4717 【模板】快速沃尔什变换的更多相关文章
- 洛谷.4717.[模板]快速沃尔什变换(FWT)
题目链接 https://www.mina.moe/archives/7598 //285ms 3.53MB #include <cstdio> #include <cctype&g ...
- LG4717 【模板】快速沃尔什变换
题意 题目描述 给定长度为\(2^n\)两个序列\(A,B\),设\(C_i=\sum_{j\oplus k}A_jB_k\)分别当\(\oplus\)是or,and,xor时求出C 输入输出格式 输 ...
- 快速沃尔什变换(FWT)学习笔记
概述 FWT的大体思路就是把要求的 C(x)=A(x)×B(x) 即 \( c[i]=\sum\limits_{j?k=i} (a[j]*b[k]) \) 变换成这样的:\( c^{'}[i]=a^ ...
- 初学FWT(快速沃尔什变换) 一点心得
FWT能解决什么 有的时候我们会遇到要求一类卷积,如下: Ci=∑j⊕k=iAj∗Bk\large C_i=\sum_{j⊕k=i}A_j*B_kCi=j⊕k=i∑Aj∗Bk此处乘号为普通乘法 ...
- Fast Walsh-Hadamard Transform——快速沃尔什变换
模板题: 给定$n = 2^k$和两个序列$A_{0..n-1}$, $B_{0..n-1}$,求 $$C_i = \sum_{j \oplus k = i} A_j B_k$$ 其中$\oplus$ ...
- [学习笔记]FWT——快速沃尔什变换
解决涉及子集配凑的卷积问题 一.介绍 1.基本用法 FWT快速沃尔什变换学习笔记 就是解决一类问题: $f[k]=\sum_{i\oplus j=k}a[i]*b[j]$ 基本思想和FFT类似. 首先 ...
- 快速沃尔什变换(FWT)笔记
开头Orz hy,Orz yrx 部分转载自hy的博客 快速沃尔什变换,可以快速计算两个多项式的位运算卷积(即and,or和xor) 问题模型如下: 给出两个多项式$A(x)$,$B(x)$,求$C( ...
- JS组件系列——BootstrapTable+KnockoutJS实现增删改查解决方案(四):自定义T4模板快速生成页面
前言:上篇介绍了下ko增删改查的封装,确实节省了大量的js代码.博主是一个喜欢偷懒的人,总觉得这些基础的增删改查效果能不能通过一个什么工具直接生成页面效果,啥代码都不用写了,那该多爽.于是研究了下T4 ...
- 关于快速沃尔什变换(FWT)的一点学习和思考
最近在学FWT,抽点时间出来把这个算法总结一下. 快速沃尔什变换(Fast Walsh-Hadamard Transform),简称FWT.是快速完成集合卷积运算的一种算法. 主要功能是求:,其中为集 ...
- FWT快速沃尔什变换学习笔记
FWT快速沃尔什变换学习笔记 1.FWT用来干啥啊 回忆一下多项式的卷积\(C_k=\sum_{i+j=k}A_i*B_j\) 我们可以用\(FFT\)来做. 甚至在一些特殊情况下,我们\(C_k=\ ...
随机推荐
- 初识springboot
一.springboot简介: 1.简化spring应用开发框架 2.把spring所有技术整合在了一起 3.J2EE开发的一站式解决方案 我曾经学习springMVC时候,那许许多多的配置文件的配置 ...
- HRY and codefire
传送门: 设 dp[i][j]为第一个号i等级,第二个号j等级的期望值 a[i]存每个等级上分的概率 dp[i][j]=a[i]*dp[i+1][j]+(1-a[i])*dp[j][i]+1 dp[j ...
- CJSON在项目中的应用
无需编译,只需将 cJSON.c.cJSON.h 添加到项目中即可使用
- Cocos Creator cc.Button (脚本事件内容)
cc.Class({extends: cc.Component,properties: {}, onLoad: function () { var clickEventHandler = new cc ...
- 1#认识Java
Java是一种面对对象的编程语言. Java共分为三个体系:JavaEE.JavaSE.JavaMS Java SE 1: Java Platform Standard Edition,Java平台标 ...
- windows----------telnet不是内部命令问题
1.
- jquery判断字符长度 数字英文算1字符 汉字算2字符
<input type="text" maxlength="25" oninput="textlength(this)"> &l ...
- caffe的cancat层
我在训练Goolenet inception-v3时候出现了concat错误,因此写下concat层的一些知识点,以供读者跳坑 concat层在inception-v3网络中存在非常明显,之所以需要c ...
- [macOS] git忽略所有的.DS_Store文件
最彻底的方法如下: vi ~/.gitignore_global 输入以下内容 # OS generated files # ###################### .DS_Store .DS_ ...
- 【转】OJ提交时G++与C++的区别
关于G++ 首先更正一个概念,C++是一门计算机编程语言,G++不是语言,是一款编译器中编译C++程序的命令而已.那么他们之间的区别是什么? 在提交题目中的语言选项里,G++和C++都代表编译的方式. ...