1.  Faraday 电磁感应定律: 设 $l$ 为任一闭曲线, 则 $$\bex \oint_l{\bf E}\cdot\rd {\bf l} =-\int_S \cfrac{\p {\bf B}}{\p t}\cdot{\bf n}\rd S, \eex$$ 其中 $S$ 为任一以 $l$ 为边界的有向曲面, 其方向与 $l$ 成右手定则.

(1)  这是 Faraday 从实验中总结出来的规律.

(2)  负号的意义: 若沿 ${\bf n}$ 的磁通量增加, 则产生的感应电动势应抑制这一磁通量的增加. 这就是 Lenz 定律.

(3)  由 $S$ 的任意性知 $$\beex \bea 0&=\int_S \cfrac{\p{\bf B}}{\p t}\cdot{\bf n}\rd S\quad\sex{S:\mbox{ 封闭曲面}}\\ &=\cfrac{\rd }{\rd t}\int_S{\bf B}\cdot{\bf n}\rd S\\ &=\cfrac{\rd }{\rd t}\int_\Omega \Div{\bf B}\rd V. \eea \eeex$$ 于是 $$\bex \cfrac{\p}{\p t}\Div {\bf B}=0.  \eex$$ 进一步, 若初始时, $\Div{\bf B}=0$, 则以后均有 $\Div{\bf B}=0$.

[物理学与PDEs]第1章第2节 预备知识 2.3 Faraday 电磁感应定律的更多相关文章

  1. [物理学与PDEs]第1章第2节 预备知识 2.2 Ampere-Biot-Savart 定律, 静磁场的散度与旋度

    1. 电流密度, 电荷守恒定律 (1) 电荷的定向移动形成电流. (2) 电流密度 ${\bf j}$, 是描述导体内一点在某一时刻电流流动情况的物理量, 用单位时间内通过垂直于电流方向的单位面积的电 ...

  2. [物理学与PDEs]第1章第2节 预备知识 2.1 Coulomb 定律, 静电场的散度与旋度

    1. Coulomb 定律, 电场强度 (1) 真空中 $P_1$ 处有电荷 $q_1$, $P$ 处有电荷 $q$, ${\bf r}_1=\vec{P_1P}$, 则 $q$ 所受的力为 $$\b ...

  3. [物理学与PDEs]第5章第1节 引言

    1.  弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2.  荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...

  4. [物理学与PDEs]第4章第1节 引言

    1.  本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2.  燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...

  5. [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题

    5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1.  线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...

  6. [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构

    5.5.1 线性弹性动力学方程组   1.  线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...

  7. [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系

    5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\ ...

  8. [物理学与PDEs]第5章第3节 守恒定律, 应力张量

    5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0.  \eex$$ 5. 3. 2 应 ...

  9. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量

    1.  位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$ 2.  位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$ ...

随机推荐

  1. Django REST framework框架介绍和基本使用

    Django REST framework介绍 Django REST framework是基于Django实现的一个RESTful风格API框架,能够帮助我们快速开发RESTful风格的API. 官 ...

  2. web Deploy发布问题

    使用vs开发的时候,经常会发布项目.传统发布是登陆远程桌面.或ftp这些发布都有一定的麻烦.不能灵活的管理发布的文件.因此后来研究了web Deploy,研究之后发现是很不错的发布工具.这里把我使用w ...

  3. 启动Hadoop总是需要输入密码的问题.

    start-all.sh 总是需要输入当前密码. 一开始以为是权限不够. 1.修改sudo配置文件 sudo visudo 增加 hduser ALL=(ALL) NOPASSWD:ALL 解决了 权 ...

  4. Mongo字符串类型的数值查询---$Where查询介绍

    ​        在Mongo中都知道字符串类型大小比较都是以ASCII进行比较的,所以无法真实比较字符串类型的数值大小 ​      比如查询age大于3的: db.getCollection(&q ...

  5. VSCode 必装的 10 个高效开发插件

    本文介绍了目前前端开发最受欢迎的开发工具 VSCode 必装的 10 个开发插件,用于大大提高软件开发的效率. VSCode 的基本使用可以参考我的原创视频教程「VSCode 高效开发必装插件」. V ...

  6. 百度地图IP定位,点击地图添加marker

    <html> <head> <meta http-equiv="Content-Type" content="text/html; char ...

  7. D3.js 入门学习(一)

    一.安装D3.js 1.网络连接 <script src="https://d3js.org/d3.v4.min.js"></script> 2.命令行安装 ...

  8. MySQL系列:数据库基本操作(1)

    1. 登录数据库 mysql -h localhost -u root -p 2. 数据库基本操作 2.1 查看数据库 mysql> SHOW DATABASES; +------------- ...

  9. idea打开项目,没有项目文件,文件报红

    删除项目文件夹中的.idea文件,重启idea,再执行如下操作.

  10. LODOP直线px转换mm变斜线

    LODOP中打印项顶边距左边距,宽高,可以选择的单位很多,详细可在LODOP官网下载参考LODOP技术手册. 关于LODOP打印直线和虚线,可查看本博客相关博文:Lodop如何打印直线.Lodop打印 ...