Description

The most important part of a GSM network is so called Base Transceiver Station (BTS). These transceivers form the areas called cells (this term gave the name to the cellular phone) and every phone connects to the BTS with the strongest signal (in a little simplified view). Of course, BTSes need some attention and technicians need to check their function periodically.

ACM technicians faced a very interesting problem recently. Given a set of BTSes to visit, they needed to find the shortest path to visit all of the given points and return back to the central company building. Programmers have spent several months studying this problem but with no results. They were unable to find the solution fast enough. After a long time, one of the programmers found this problem in a conference article. Unfortunately, he found that the problem is so called "Travelling Salesman Problem" and it is very hard to solve. If we have N BTSes to be visited, we can visit them in any order, giving us N! possibilities to examine. The function expressing that number is called factorial and can be computed as a product 1.2.3.4....N. The number is very high even for a relatively small N.

The programmers understood they had no chance to solve the problem. But because they have already received the research grant from the government, they needed to continue with their studies and produce at least some results. So they started to study behaviour of the factorial function.

For example, they defined the function Z. For any positive integer N, Z(N) is the number of zeros at the end of the decimal form of number N!. They noticed that this function never decreases. If we have two numbers N1 < N2, then Z(N1) <= Z(N2). It is because we can never "lose" any trailing zero by multiplying by any positive number. We can only get new and new zeros. The function Z is very interesting, so we need a computer program that can determine its value efficiently.

Input

There is a single positive integer T on the first line of input. It stands for the number of numbers to follow. Then there is T lines, each containing exactly one positive integer number N, 1 <= N <= 1000000000.

Output

For every number N, output a single line containing the single non-negative integer Z(N).

Sample Input

6
3
60
100
1024
23456
8735373

Sample Output

0
14
24
253
5861
2183837

Hint

poj1401

题解:

我们知道0的来源就是2和5的相乘,,那么我们就可以统计2和5 的个数 以小的个数为准,但是很显然2的个数大于5的个数,
注意(4 = 2 * 2 )所以4 是两个2 同样 8是 3 个 2 ,那么我们就可以统计 从 1 到 n 中5 的个数,当然 25 , 50 要统计两遍 ,125 ,250等 要统计 3遍 ,因为 25 = 5 * 5,,50 = 2 *5 *5 ,,125 = 5 * 5 * 5。
 #include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<iomanip>
#include<map>
#include<stack>
#include<vector>
#include<queue>
#include<set>
#include<utility>
#include<list>
#include<algorithm>
#include <ctime>
#define max(a,b) (a>b?a:b)
#define min(a,b) (a<b?a:b)
#define swap(a,b) (a=a+b,b=a-b,a=a-b)
#define memset(a,v) memset(a,v,sizeof(a))
#define X (sqrt(5)+1)/2.0
#define maxn 320007
#define N 200005
#define INF 0x3f3f3f3f
#define PI acos(-1)
#define lowbit(x) (x&(-x))
#define read(x) scanf("%d",&x)
#define put(x) printf("%d\n",x)
#define memset(x,y) memset(x,y,sizeof(x))
#define Debug(x) cout<<x<<" "<<endl
#define lson i << 1,l,m
#define rson i << 1 | 1,m + 1,r
#define mod 1000000009
#define e 2.718281828459045
#define eps 1.0e18
#define ll long long
using namespace std; int main()
{
int t;
cin>>t;
while(t--)
{
int n,res=;
cin>>n;
while (n)
{
res+=n/;
n/=;
}
cout<<res<<endl;
}
return ;
}

Factorial(hdu 1124)的更多相关文章

  1. 题解报告:hdu 1124 Factorial(求N!尾数有多少个0。)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1124 Problem Description The most important part of a ...

  2. HDU 1124 Factorial (数论)

    http://acm.hdu.edu.cn/showproblem.php? pid=1124 題目好長好長,好可怕,看完腎都萎了,以後肯定活不長.我可不能死在這種小事上,小灰灰我勵志死在少女的超短裙 ...

  3. hdu 1124 Factorial(数论)

    题意: 求n!的尾0的个数 分析: 0一定是由因子2和5相乘产生的: 2的个数显然大于5的个数,故只需统计因子5的个数 n/5不能完全表示n!中5的个数(egg: 25),应该n/=5后,累加上n/2 ...

  4. HDU 1124 Factorial (阶乘后缀0)

    题意: 给一个数n,返回其阶乘结果后缀有几个0. 思路: 首先将n个十进制数进行质因数分解,观察的得到只有2*5才会出现10.那么n!应含有min(2个数,5个数)个后缀0,明显5的个数必定比2少,所 ...

  5. [SinGuLaRiTy] 组合数学题目复习

    [SinGuLaRiTy] Copyright (c) SinGuLaRiTy 2017.  All Rights Reserved. [CQBZOJ 2011] 计算系数 题目描述 给定一个多项式( ...

  6. hdu 3758 Factorial Simplification

    这题主要是质因数分解!! 求出每个因子的幂,如果有负数,则输出-1: 如果2的幂数为0,这输出0: 最后就是开始凑阶乘了…… #include<iostream> #include< ...

  7. HDU——PKU题目分类

    HDU 模拟题, 枚举1002 1004 1013 1015 1017 1020 1022 1029 1031 1033 1034 1035 1036 1037 1039 1042 1047 1048 ...

  8. 转载:hdu 题目分类 (侵删)

    转载:from http://blog.csdn.net/qq_28236309/article/details/47818349 基础题:1000.1001.1004.1005.1008.1012. ...

  9. leetcode N-Queens/N-Queens II, backtracking, hdu 2553 count N-Queens, dfs 分类: leetcode hdoj 2015-07-09 02:07 102人阅读 评论(0) 收藏

    for the backtracking part, thanks to the video of stanford cs106b lecture 10 by Julie Zelenski for t ...

随机推荐

  1. 开启text汇聚排序

    开启text汇聚排序 curl -X PUT "http://192.168.1.136:19200/hxl_test/_mapping/tb_test" -H 'Content- ...

  2. Spring 学习——Spring AOP——AOP配置篇Advice(有参数传递)

    声明通知Advice 配置方式(以前置通知为例子) 方式一 <aop:config> <aop:aspect id="ikAspectAop" ref=" ...

  3. VueJS第2天 初阅API(初识MarkDown)

    指令是带有前缀 v-,以表示它们是 Vue 提供的特殊特性.可能你已经猜到了,它们会在渲染的 DOM 上应用特殊的响应式行为 v-bind --> 数据绑定 v-for --> 循环 v- ...

  4. TabLayout的高级使用

    前言 前面介绍了TabLayout的基本属性和基本的使用方法.我是传送门. 真实的业务场景中,很多的效果,原生的TabLayout,并不支持.例如下滑线短于文字的效果,底部导航栏效果,标签文字选中是需 ...

  5. 关于spring boot中的pageHelper的mybatis插件使用

    先引入pageHelper依赖: <dependency>            <groupId>com.github.pagehelper</groupId>  ...

  6. 深度学习环境搭建(ubuntu16.04+Titan Xp安装显卡驱动+Cuda9.0+cudnn+其他软件)

    一.硬件环境 ubuntu 16.04LTS + windows10 双系统 NVIDIA TiTan XP 显卡(12G) 二.软件环境 搜狗输入法 下载地址 显卡驱动:LINUX X64 (AMD ...

  7. 2019 ICPC南昌邀请赛 网络赛 K. MORE XOR

    说明 \(\oplus x​\)为累异或 $ x^{\oplus(a)}​$为异或幂 题意&解法 题库链接 $ f(l,r)=\oplus_{i=l}^{r} a[i]$ $ g(l,r)=\ ...

  8. ASP.NET MVC WebAPI Put和Delete请求出现405(Method not allowed)错误

    解决办法: 在站点根目录下的web.config设置如下(主要参考添加项): <system.webServer> <modules> <remove name=&quo ...

  9. CSS之实现垂直时间线展示相关内容效果

    如下,最近在工作中遇到实现时间线效果的需求,用纯css即可实现,下面给出详细实现代码. html: <div class="time_line_list_wrap hide" ...

  10. leecode第二百三十八题(除自身以外数组的乘积)

    class Solution { public: vector<int> productExceptSelf(vector<int>& nums) { int len= ...