Theorem 18.4 in James Munkres “Topology” states that if a function \(f : A \rightarrow X \times Y\) is continuous, its coordinate functions \(f_1 : A \rightarrow X\) and \(f_2 : A \rightarrow Y\) are also continuous, and the converse is also true. This is what we have been familiar with, such as a continuous parametric curve \(f: [0, 1] \rightarrow \mathbb{R}^3\) defined as \(f(t) = (x(t), y(t), z(t))^T\) with its three components being continuous. However, if a function \(g: A \times B \rightarrow X\) is separately continuous in each of its components, i.e. both \(g_1: A \rightarrow X\) and \(g_2 : B \rightarrow X\) are continuous, \(g\) is not necessarily continuous.

Here, the said “separately continuous in each of its components” means arbitrarily selecting the value of one component variable from its domain and fix it, then the original function depending only on the other component is continuous. In the above, the function \(g\) can be envisaged as a curved surface in 3D space. With \(g_1\) being continuous, the intersection profiles between this curved surface and those planes perpendicular to the coordinate axis for \(B\) are continuous. Similarly, because \(g_2\) is continuous, the intersection profiles obtained from those planes perpendicular to the coordinate axis for \(A\) are also continuous. The continuity of intersection curves is only ensured in these two special directions, so it is not guaranteed that the original function \(g\) is continuous.

In Exercise 12 of Section 18, an example is given as
\[
F(x \times y) = \begin{cases}
\frac{xy}{x^2 + y^2} & (x \neq 0, y \neq 0) \\
0 & (x = 0, y = 0)
\end{cases},
\]
where \(F\) is continuous separately in each of its component variables but is not continuous by itself. This is function is visualized below.

Fix \(y\) at \(y_0\), we have \(F_{y_0}(x) = F(x \times y_0)\). When \(y_0 \neq 0\), \(F_{y_0}(x)\) is continuous with respect to \(x\) because it is only a composition of continuous real valued functions via simple arithmetic. When \(y_0 = 0\), if \(x \neq 0\), \(F_0(x) = 0\); if \(x =0\), \(F_0(x)\) is also 0 due to the definition of \(F(x \times y)\). Therefore, \(F_0(x)\) is a constant function, which is continuous due to Theorem 18.2 (a). Similarly, \(F_{x_0}(y)\) is also continuous with respect to \(y\).

However, if we let \(x = y\) and approach \((x, y) = (x, x)\) to \((0, 0)\), it can be seen that \(F(x \times x)\) is not continuous, because

  • when \(x \neq 0\), \(F(x \times x) = \frac{x^2}{x^2 + x^2} = \frac{1}{2}\);
  • when \(x = 0\), \(F(x \times x) = 0\).

If we let \(x = -y\) and approach \((x ,y) = (x, -x)\) to \((0, 0)\), \(F = -\frac{1}{2}\) when \(x \neq 0\) and \(F = 0\) when \(x = 0\).

Then, if we select an open set such as \((-\frac{1}{4}, \frac{1}{4})\) around the function value \(0\) in \(\mathbb{R}\), its pre-image \(U\) in \(\mathbb{R} \times \mathbb{R}\) should include the point \((0, 0)\) and exclude the rays \((x, x)\) and \((x, -x)\) with \(x \in \mathbb{R}\) and \(x \neq 0\). Due to these excluded rays, there is no neighborhood of \((0, 0)\) in \(\mathbb{R} \times \mathbb{R}\) that is contained completely in \(U\). Therefore, \(U\) is not an open set and \(F(x \times y)\) is not continuous.

From the above analysis, some lessons can be learned.

  1. Pure analysis can be made and general conclusions can be obtained before entering into the real world with a solid example.
  2. A tangible counter example is a sound proof for negation of a proposition. Just one is enough!

James Munkres Topology: Sec 18 Exer 12的更多相关文章

  1. James Munkres Topology: Sec 22 Exer 3

    Exercise 22.3 Let \(\pi_1: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}\) be projection on th ...

  2. James Munkres Topology: Sec 22 Exer 6

    Exercise 22.6 Recall that \(\mathbb{R}_{K}\) denotes the real line in the \(K\)-topology. Let \(Y\) ...

  3. James Munkres Topology: Sec 37 Exer 1

    Exercise 1. Let \(X\) be a space. Let \(\mathcal{D}\) be a collection of subsets of \(X\) that is ma ...

  4. James Munkres Topology: Sec 22 Example 1

    Example 1 Let \(X\) be the subspace \([0,1]\cup[2,3]\) of \(\mathbb{R}\), and let \(Y\) be the subsp ...

  5. James Munkres Topology: Theorem 19.6

    Theorem 19.6 Let \(f: A \rightarrow \prod_{\alpha \in J} X_{\alpha}\) be given by the equation \[ f( ...

  6. James Munkres Topology: Lemma 21.2 The sequence lemma

    Lemma 21.2 (The sequence lemma) Let \(X\) be a topological space; let \(A \subset X\). If there is a ...

  7. James Munkres Topology: Theorem 20.3 and metric equivalence

    Proof of Theorem 20.3 Theorem 20.3 The topologies on \(\mathbb{R}^n\) induced by the euclidean metri ...

  8. James Munkres Topology: Theorem 20.4

    Theorem 20.4 The uniform topology on \(\mathbb{R}^J\) is finer than the product topology and coarser ...

  9. James Munkres Topology: Theorem 16.3

    Theorem 16.3 If \(A\) is a subspace of \(X\) and \(B\) is a subspace of \(Y\), then the product topo ...

随机推荐

  1. webpack4 学习 --- webpack和webpack-dev-server

    以前了解过webpack2, 所以对webpack 不是很陌生,就直接入主题吧.新建一个文件夹,就叫它webpack-tut吧.然后在文件中新建一个src 文件夹,存放我们的源文件,再在src 文件夹 ...

  2. eclipse安装Activiti

    一. eclipse自己下载 打开eclipse软件,然后点击菜单栏的help选项,选择install New Software,示例如下: 出现如下对话框: 点击添加[Add]按钮,出现如下对话框 ...

  3. [WC2018]通道——边分治+虚树+树形DP

    题目链接: [WC2018]通道 题目大意:给出三棵n个节点结构不同的树,边有边权,要求找出一个点对(a,b)使三棵树上这两点的路径权值和最大,一条路径权值为路径上所有边的边权和. 我们按照部分分逐个 ...

  4. 5.15 pymysql 模块

    pymysql 模块 安装 pip3 install pymysql 链接,执行sql,关闭(游标) import pymysql user= input('用户名:>>').strip( ...

  5. edusoho -A5: AppBundle UML

    edusoho -A5:  AppBundle UML

  6. Gym - 101350E Competitive Seagulls (博弈)

    There are two seagulls playing a very peculiar game. First they line up N unit squares in a line, al ...

  7. Vue(小案例_vue+axios仿手机app)_go实现退回上一个路由

    一.前言 this.$router.go(-1)返回上级路由 二.主要内容 1.小功能演示: 2.组件之间的嵌套关系为: 3.具体实现 (1)由于这种返回按钮在每个页面中的结构都是一样的,只是里面的数 ...

  8. DMA设计

    目录 DMA设计 DMA框架 手册请看英文手册 芯片特性 请求来源 协议简述 基本时序 模式 协议 数据大小的描述 具体完整的实例时序 代码设计 驱动程序 测试程序 测试 参考链接 title: DM ...

  9. 集成Tomcat环境到Eclipse中

    集成Tomcat环境到Eclipse中 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.安装Eclipse环境 1>.安装JDK环境 官方地址:https://www.or ...

  10. Linux记录-open-falcon开源监控系统部署

    参考https://book.open-falcon.org/zh_0_2/quick_install/prepare.html一.安装后端1.环境准备yum -y install redisyum ...