You are playing a simplified Pacman game. You start at the point (0, 0), and your destination is (target[0], target[1]). There are several ghosts on the map, the i-th ghost starts at (ghosts[i][0], ghosts[i][1]).

Each turn, you and all ghosts simultaneously *may* move in one of 4 cardinal directions: north, east, west, or south, going from the previous point to a new point 1 unit of distance away.

You escape if and only if you can reach the target before any ghost reaches you (for any given moves the ghosts may take.)  If you reach any square (including the target) at the same time as a ghost, it doesn't count as an escape.

Return True if and only if it is possible to escape.

Example 1:
Input:
ghosts = [[1, 0], [0, 3]]
target = [0, 1]
Output: true
Explanation:
You can directly reach the destination (0, 1) at time 1, while the ghosts located at (1, 0) or (0, 3) have no way to catch up with you.
Example 2:
Input:
ghosts = [[1, 0]]
target = [2, 0]
Output: false
Explanation:
You need to reach the destination (2, 0), but the ghost at (1, 0) lies between you and the destination.
Example 3:
Input:
ghosts = [[2, 0]]
target = [1, 0]
Output: false
Explanation:
The ghost can reach the target at the same time as you.

Note:

  • All points have coordinates with absolute value <= 10000.
  • The number of ghosts will not exceed 100.

这道题就是经典的吃豆人游戏啦,不过是简化版,小人只能躲开鬼魂,并不能吃大力丸,反干鬼魂。小人在原点,有若干个鬼魂在不同的位置,给了一个目标点,问小人能不能安全到达目标点。这里的鬼魂的设定跟游戏中的一样,都是很智能的,会朝着你移动,而且这里设定了如果跟鬼魂同时到达目标点也算输。那么实际上这道题就是要求出小人到目标点的最短距离,注意这里的距离不是两点之间的 Euclidean 距离,而应该是曼哈顿距离,即横纵坐标分别求差的绝对值再相加。求出小人到目标点到最短距离后,还要求每个鬼魂到目标点的最短距离,如果有一个鬼魂到目标带你的最短距离小于等于小人到目标点到最短距的话,那么就返回 false,否则返回 true,参见代码如下:

解法一:

class Solution {
public:
bool escapeGhosts(vector<vector<int>>& ghosts, vector<int>& target) {
int dist = abs(target[]) + abs(target[]), mn = INT_MAX;
for (auto ghost : ghosts) {
int t = abs(ghost[] - target[]) + abs(ghost[] - target[]);
mn = min(mn, t);
}
return dist < mn;
}
};

我们可以对上面的解法进行一个小优化,就是其实并不需要算完每一个鬼魂到目标点到最短距离,而是每算一个就进行比较,只要小于等于小人到目标点的最短距离了,就直接返回 false。循环退出后返回 true,参见代码如下:

解法二:

class Solution {
public:
bool escapeGhosts(vector<vector<int>>& ghosts, vector<int>& target) {
int dist = abs(target[]) + abs(target[]);
for (auto ghost : ghosts) {
int t = abs(ghost[] - target[]) + abs(ghost[] - target[]);
if (t <= dist) return false;
}
return true;
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/789

参考资料:

https://leetcode.com/problems/escape-the-ghosts/

https://leetcode.com/problems/escape-the-ghosts/discuss/116507/Java-5-liner

https://leetcode.com/problems/escape-the-ghosts/discuss/116522/C%2B%2BJavaPython-Easy-and-Concise-Solution

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Escape The Ghosts 逃离鬼魂的更多相关文章

  1. [LeetCode] 789. Escape The Ghosts 逃离鬼魂

    You are playing a simplified Pacman game. You start at the point (0, 0), and your destination is (ta ...

  2. LC 789. Escape The Ghosts

    You are playing a simplified Pacman game. You start at the point (0, 0), and your destination is(tar ...

  3. 【LeetCode】789. Escape The Ghosts 解题报告(Python & C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 日期 题目地址:https://leetcode.c ...

  4. LeetCode 789. Escape The Ghosts

    题目链接:https://leetcode.com/problems/escape-the-ghosts/description/ You are playing a simplified Pacma ...

  5. 73th LeetCode Weekly Contest Escape The Ghosts

    You are playing a simplified Pacman game. You start at the point (0, 0), and your destination is(tar ...

  6. [Swift]LeetCode789. 逃脱阻碍者 | Escape The Ghosts

    You are playing a simplified Pacman game. You start at the point (0, 0), and your destination is (ta ...

  7. 789. Escape The Ghosts

    You are playing a simplified Pacman game. You start at the point (0, 0), and your destination is (ta ...

  8. 【Leetcode周赛】从contest-71开始。(一般是10个contest写一篇文章)

    Contest 71 () Contest 72 () Contest 73 (2019年1月30日模拟) 链接:https://leetcode.com/contest/weekly-contest ...

  9. Swift LeetCode 目录 | Catalog

    请点击页面左上角 -> Fork me on Github 或直接访问本项目Github地址:LeetCode Solution by Swift    说明:题目中含有$符号则为付费题目. 如 ...

随机推荐

  1. 无连接运输的UDP、可靠数据传输原理、面向连接运输的TCP

    由[RFC 768]定义的UDP只是做了运输协议能够做的最少工作.除了复用/分解功能极少量的差错检测外,它几乎没有对IP增加别的东西.如果应用程序开发人员选择UDP而不是TCP,则该应用程序差不多就是 ...

  2. SQL修改日期类型字段为字符串类型

    select * from test1 --添加行 ) --将转换格式后的数据放到列中 ) --删除老的字段 alter table test1 drop column startdate --修改字 ...

  3. PWD的编译及调试

    实现mypwd 1 学习pwd命令 2 研究pwd实现需要的系统调用(man -k; grep),写出伪代码 3 实现mypwd 4 测试mypwd Linux命令学习:pwd命令 该命令用来显示目前 ...

  4. PHP微信公众号JSAPI网页支付(下)

    上一篇PHP微信公众号JSAPI网页支付(上)中讲到了公众号平台的相关设置以及支付的大致流程. 这一篇重点讲支付后,异步接受回调通知,以及处理后同步通知微信服务器. 首先梳理下整个jsapi支付的流程 ...

  5. JAVA进阶13

    间歇性混吃等死,持续性踌躇满志系列-------------第13天 1.查看线程的运行状态 package code0327; class Demo01 implements Runnable { ...

  6. 激活函数——sigmoid函数(理解)

    0 - 定义 $Sigmoid$函数是一个在生物学中常见的S型函数,也称为$S$型生长曲线.在信息科学中,由于其单增以及反函数单增等性质,$Sigmoid$函数常被用作神经网络的阈值函数,将变量映射到 ...

  7. Linux常用命令总结-软件测试面试专用

  8. SQL server 存储过程中 列传行

    select @exchange=exchange,@coupons_type=coupons_type - FLOOR(exchange))) from points_exchange_svc wh ...

  9. 006_设置执行命令提示和unset shell function

    一.unset不能unset只读变量 问题: [root@zb1-bdwaimai-inf-wfe-28 ~]# source ~/.bash_profile bash: PROMPT_COMMAND ...

  10. 【算法】【python实现】二叉搜索树插入、删除、查找

    二叉搜索树 定义:如果一颗二叉树的每个节点对应一个关键码值,且关键码值的组织是有顺序的,例如左子节点值小于父节点值,父节点值小于右子节点值,则这棵二叉树是一棵二叉搜索树. 类(TreeNode):定义 ...