Python 回溯算法
回溯算法(试探法)
在搜索尝试过程中寻找问题的解,当发现已不满足求解条件时,就“回溯”返回,尝试别的路径。回溯法是一种选优搜索法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。
回溯算法解决问题的
- 针对所给问题,定义问题的解空间,它至少包含问题的一个(最优)解。
- 确定易于搜索的解空间结构,使得能用回溯法方便地搜索整个解空间 。
- 以深度优先的方式搜索解空间,并且在搜索过程中用剪枝函数避免无效搜索。
实例:
地上有一个m行和n列的方格。一个机器人从坐标0,0的格子开始移动,
每一次只能向左,右,上,下四个方向移动一格,
但是不能进入行坐标和列坐标的数位之和大于k的格子。
例如,当k为18时,机器人能够进入方格(35,37),因为3+5+3+7 = 18。但是,它不能进入方格(35,38),因为3+5+3+8 = 19。请问该机器人能够达到多少个格子?
class Solution:
def movingCount(self, threshold, rows, cols):
"产生 0 矩阵 "
board=[[0 for i in range(cols)] for j in range(rows)]
global acc
acc = 0
"下标之和,若大于threshold则TRUE,否则Folse"
def block(r,c):
s=sum(map(int,str(r)+str(c)))
return s>threshold
def traverse(r,c):
global acc
if not (0<=r<rows and 0<=c<cols): # 超出角标范围挑出
return
if board[r][c]!=0: # 不等于0 跳出
return
if board[r][c]==-1 or block(r,c):
board[r][c]=-1 #超出门限的点记录-1
return
board[r][c]=1 #符合规定的点记录1,并计数加一
acc+=1
traverse(r+1,c)
traverse(r-1,c)
traverse(r,c+1)
traverse(r,c-1)
traverse(0,0)
return acc
o = Solution()
print(o.movingCount(4 ,3 ,3))
# 输出结果:
9
Python 回溯算法的更多相关文章
- python常用算法(7)——动态规划,回溯法
引言:从斐波那契数列看动态规划 斐波那契数列:Fn = Fn-1 + Fn-2 ( n = 1,2 fib(1) = fib(2) = 1) 练习:使用递归和非递归的方法来求解斐波那契数 ...
- LeetCode37 使用回溯算法实现解数独,详解剪枝优化
本文始发于个人公众号:TechFlow,原创不易,求个关注 数独是一个老少咸宜的益智游戏,一直有很多拥趸.但是有没有想过,数独游戏是怎么创造出来的呢?当然我们可以每一关都人工设置,但是显然这工作量非常 ...
- LeetCode46 回溯算法求全排列,这次是真全排列
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是LeetCode的26篇文章,我们来实战一下全排列问题. 在之前的文章当中,我们讲过八皇后.回溯法,也提到了全排列,但是毕竟没有真正写 ...
- Python基础算法综合:加减乘除四则运算方法
#!usr/bin/env python# -*- coding:utf-8 -*-#python的算法加减乘除用符号:+,-,*,/来表示#以下全是python2.x写法,3.x以上请在python ...
- 46. Permutations 回溯算法
https://leetcode.com/problems/permutations/ 求数列的所有排列组合.思路很清晰,将后面每一个元素依次同第一个元素交换,然后递归求接下来的(n-1)个元素的全排 ...
- ACM/ICPC 之 最长公共子序列计数及其回溯算法(51Nod-1006(最长公共子序列))
这道题被51Nod定为基础题(这要求有点高啊),我感觉应该可以算作一级或者二级题目,主要原因不是动态规划的状态转移方程的问题,而是需要理解最后的回溯算法. 题目大意:找到两个字符串中最长的子序列,子序 ...
- c语言数据结构:递归的替代-------回溯算法
1.要理解回溯就必须清楚递归的定义和过程. 递归算法的非递归形式可采用回溯算法.主要考虑的问题在于: 怎样算完整的一轮操作. 执行的操作过程中怎样保存当前的状态以确保以后回溯访问. 怎样返回至上一次未 ...
- 8皇后以及N皇后算法探究,回溯算法的JAVA实现,非递归,循环控制及其优化
上两篇博客 8皇后以及N皇后算法探究,回溯算法的JAVA实现,递归方案 8皇后以及N皇后算法探究,回溯算法的JAVA实现,非递归,数据结构“栈”实现 研究了递归方法实现回溯,解决N皇后问题,下面我们来 ...
- 8皇后以及N皇后算法探究,回溯算法的JAVA实现,递归方案
八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例.该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行.同 ...
随机推荐
- pyspider安装出现问题参考
File "c:\users\13733\appdata\local\programs\python\python37\lib\site-packages\pyspider\run.py&q ...
- Github经理和员工开发
Git简介 Git是目前世界上最先进的分布式版本控制系统 git的两大特点: 版本控制:可以解决多人同时开发的代码问题,也可以解决找回历史代码的问题 分布式:Git是分布式版本控制系统,同一个Git仓 ...
- SpringCloud学习笔记:SpringCloud简介(1)
1. 微服务 微服务具有的特点: ◊ 按照业务划分服务 ◊ 每个微服务都有独立的基础组件,如:数据库.缓存等,且运行在独立的进程中: ◊ 微服务之间的通讯通过HTTP协议或者消息组件,具有容错能力: ...
- .class和.getClass()的区别
使用指定类初始化日志对象,在日志输出的时候,可以打印出日志信息所在类 如: getClass() 返回此 Object 的运行时类. //需要有com.lpx.test.class这个类 Logger ...
- Jupyter Notebook(推荐使用Anaconda安装)
一.Jupyter Notebook介绍 1.简介 Jupyter Notebook是基于网页的用于交互计算的应用程序.其可被应用于全过程计算:开发.文档编写.运行代码和展示结果. 简而言之,Jupy ...
- 高斯消元(Gauss消元)
众所周知,高斯消元可以用来求n元一次方程组的,主要思想就是把一个n*(n+1)的矩阵的对角线消成1,除了第n+1列(用来存放b的)的其他全部元素消成0,是不是听起来有点不可思议??! NO NO NO ...
- 【XSY3139】预言家 数位DP NFA
题目描述 有一个定义在 \(\{0,1,2,3,4,5,6,7,8,9\}\) 上的合规表达式,包含三种基本的操作: 结合:\(E_1E_2\) 分配:\((E_1|E_2|\ldots|E_n),n ...
- css实现弹出框
弹出框也是前端里面经常使用的一个应用场景了,最开始想到的是用js实现这个效果,看到codepen上面有用css实现的.其实就是用到了css里面的一个:target选择器+visibility属性. U ...
- postgresql语句
查询oracle数据库所有表数据量 select t.table_name,t.num_rows from user_tables t ORDER BY t.num_rows desc 查询postg ...
- GoLang-Beego使用
1.beego 注意事项 beego的默认架构是mvc python的django默认是mtv package main import ( "github.com/astaxie/beego ...