回溯算法(试探法)

在搜索尝试过程中寻找问题的解,当发现已不满足求解条件时,就“回溯”返回,尝试别的路径。回溯法是一种选优搜索法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。

回溯算法解决问题的

  • 针对所给问题,定义问题的解空间,它至少包含问题的一个(最优)解。
  • 确定易于搜索的解空间结构,使得能用回溯法方便地搜索整个解空间 。
  • 以深度优先的方式搜索解空间,并且在搜索过程中用剪枝函数避免无效搜索。

实例:

地上有一个m行和n列的方格。一个机器人从坐标0,0的格子开始移动,

每一次只能向左,右,上,下四个方向移动一格,

但是不能进入行坐标和列坐标的数位之和大于k的格子。

例如,当k为18时,机器人能够进入方格(35,37),因为3+5+3+7 = 18。但是,它不能进入方格(35,38),因为3+5+3+8 = 19。请问该机器人能够达到多少个格子?

class Solution:
def movingCount(self, threshold, rows, cols):
"产生 0 矩阵 "
board=[[0 for i in range(cols)] for j in range(rows)]
global acc
acc = 0
"下标之和,若大于threshold则TRUE,否则Folse"
def block(r,c):
s=sum(map(int,str(r)+str(c)))
return s>threshold def traverse(r,c):
global acc
if not (0<=r<rows and 0<=c<cols): # 超出角标范围挑出
return
if board[r][c]!=0: # 不等于0 跳出
return
if board[r][c]==-1 or block(r,c):
board[r][c]=-1 #超出门限的点记录-1
return board[r][c]=1 #符合规定的点记录1,并计数加一
acc+=1
traverse(r+1,c)
traverse(r-1,c)
traverse(r,c+1)
traverse(r,c-1) traverse(0,0)
return acc o = Solution()
print(o.movingCount(4 ,3 ,3)) # 输出结果:
9

Python 回溯算法的更多相关文章

  1. python常用算法(7)——动态规划,回溯法

    引言:从斐波那契数列看动态规划 斐波那契数列:Fn = Fn-1 + Fn-2    ( n = 1,2     fib(1) = fib(2) = 1) 练习:使用递归和非递归的方法来求解斐波那契数 ...

  2. LeetCode37 使用回溯算法实现解数独,详解剪枝优化

    本文始发于个人公众号:TechFlow,原创不易,求个关注 数独是一个老少咸宜的益智游戏,一直有很多拥趸.但是有没有想过,数独游戏是怎么创造出来的呢?当然我们可以每一关都人工设置,但是显然这工作量非常 ...

  3. LeetCode46 回溯算法求全排列,这次是真全排列

    本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是LeetCode的26篇文章,我们来实战一下全排列问题. 在之前的文章当中,我们讲过八皇后.回溯法,也提到了全排列,但是毕竟没有真正写 ...

  4. Python基础算法综合:加减乘除四则运算方法

    #!usr/bin/env python# -*- coding:utf-8 -*-#python的算法加减乘除用符号:+,-,*,/来表示#以下全是python2.x写法,3.x以上请在python ...

  5. 46. Permutations 回溯算法

    https://leetcode.com/problems/permutations/ 求数列的所有排列组合.思路很清晰,将后面每一个元素依次同第一个元素交换,然后递归求接下来的(n-1)个元素的全排 ...

  6. ACM/ICPC 之 最长公共子序列计数及其回溯算法(51Nod-1006(最长公共子序列))

    这道题被51Nod定为基础题(这要求有点高啊),我感觉应该可以算作一级或者二级题目,主要原因不是动态规划的状态转移方程的问题,而是需要理解最后的回溯算法. 题目大意:找到两个字符串中最长的子序列,子序 ...

  7. c语言数据结构:递归的替代-------回溯算法

    1.要理解回溯就必须清楚递归的定义和过程. 递归算法的非递归形式可采用回溯算法.主要考虑的问题在于: 怎样算完整的一轮操作. 执行的操作过程中怎样保存当前的状态以确保以后回溯访问. 怎样返回至上一次未 ...

  8. 8皇后以及N皇后算法探究,回溯算法的JAVA实现,非递归,循环控制及其优化

    上两篇博客 8皇后以及N皇后算法探究,回溯算法的JAVA实现,递归方案 8皇后以及N皇后算法探究,回溯算法的JAVA实现,非递归,数据结构“栈”实现 研究了递归方法实现回溯,解决N皇后问题,下面我们来 ...

  9. 8皇后以及N皇后算法探究,回溯算法的JAVA实现,递归方案

    八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例.该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行.同 ...

随机推荐

  1. 控制结构(3): 状态机(state machine)

    // 上一篇:卫语句(guard clause) // 下一篇:局部化(localization) 基于语言提供的基本控制结构,更好地组织和表达程序,需要良好的控制结构. 前情回顾 上次分析了guar ...

  2. Spring Security 无法登陆,报错:There is no PasswordEncoder mapped for the id “null”

    编写好继承了WebSecurityConfigurerAdapter类的WebSecurityConfig类后,我们需要在configure(AuthenticationManagerBuilder ...

  3. redis--主从同步,故障切换,集群搭建

    一 . redis主从同步 准备三个配置文件,实现一主两从的redis数据库结构(这三个配置文件仅仅端口不一样) # redis-6379.conf 文件, 写入下面数据: port 6379 dae ...

  4. ES-6常用语法和Vue初识

    一.ES6常用语法 1.变量的定义 1. 介绍 ES6以前 var关键字用来声明变量,无论声明在何处都存在变量提升这个事情,会提前创建变量. 作用域也只有全局作用域以及函数作用域,所以变量会提升在函数 ...

  5. 作业二:Git的安装与使用

    作业的要求来自于:https://edu.cnblogs.com/campus/gzcc/GZCC-16SE2/homework/2097 分布式版本控制系统Git的安装与使用 1.下载安装配置用户名 ...

  6. Android greenDAO 数据库 简单学习之基本使用

    看网上对greenDAO介绍的不错,今天就动手来试一把,看看好不好使. greenDAO 官方网站:http://greendao-orm.com/ 代码托管地址:https://github.com ...

  7. 4.4清北学堂Day1 主要内容:数论,数学

    Day 1; 1.常见的高精 输入输出都用字符数组: 字符数组的实际长度用strlen()来求: 运算时倒序运算,把每一个字符都-‘0’ 进位的处理上也要注意: 小数减大数时先判断大小然后加负号 只能 ...

  8. Elastalert安装及使用

    如果在windows 64平台报错:执行 pip install python-magic-bin==0.4.14修复https://stackoverflow.com/questions/18374 ...

  9. mysql快速生成批量测试数据

    mysql快速生成批量测试数据 参考资料: https://blog.csdn.net/oahz4699092zhao/article/details/53332148 -- 创建一个临时内存表 ; ...

  10. kubernetes云平台管理实战: 高级资源deployment-滚动升级(八)

    一.通过文件创建deployment 1.创建deployment文件 [root@k8s-master ~]# cat nginx_deploy.yml apiVersion: extensions ...