利用TensorFlow实现多元线性回归,代码如下:

# -*- coding:utf-8 -*-
import tensorflow as tf
import numpy as np
from sklearn import linear_model
from sklearn import preprocessing # Read x and y
x_data = np.loadtxt("ex3x.dat").astype(np.float32)
y_data = np.loadtxt("ex3y.dat").astype(np.float32) # We evaluate the x and y by sklearn to get a sense of the coefficients.
reg = linear_model.LinearRegression()
reg.fit(x_data, y_data)
print ("Coefficients of sklearn: K=%s, b=%f" % (reg.coef_, reg.intercept_)) # Now we use tensorflow to get similar results.
# Before we put the x_data into tensorflow, we need to standardize it
# in order to achieve better performance in gradient descent;
# If not standardized, the convergency speed could not be tolearated.
# Reason: If a feature has a variance that is orders of magnitude larger than others,
# it might dominate the objective function
# and make the estimator unable to learn from other features correctly as expected.
scaler = preprocessing.StandardScaler().fit(x_data)
print (scaler.mean_, scaler.scale_)
x_data_standard = scaler.transform(x_data) W = tf.Variable(tf.zeros([2, 1]))
b = tf.Variable(tf.zeros([1, 1]))
y = tf.matmul(x_data_standard, W) + b loss = tf.reduce_mean(tf.square(y - y_data.reshape(-1, 1)))/2
optimizer = tf.train.GradientDescentOptimizer(0.3)
train = optimizer.minimize(loss) init = tf.initialize_all_variables() sess = tf.Session()
sess.run(init)
for step in range(100):
sess.run(train)
if step % 10 == 0:
print (step, sess.run(W).flatten(), sess.run(b).flatten()) print ("Coefficients of tensorflow (input should be standardized): K=%s, b=%s" % (sess.run(W).flatten(), sess.run(b).flatten()))
print ("Coefficients of tensorflow (raw input): K=%s, b=%s" % (sess.run(W).flatten() / scaler.scale_, sess.run(b).flatten() - np.dot(scaler.mean_ / scaler.scale_, sess.run(W))))

数据集下载:下载地址

利用TensorFlow实现多元线性回归的更多相关文章

  1. 利用TensorFlow实现多元逻辑回归

    利用TensorFlow实现多元逻辑回归,代码如下: import tensorflow as tf import numpy as np from sklearn.linear_model impo ...

  2. Tensorflow之多元线性回归问题(以波士顿房价预测为例)

    一.根据波士顿房价信息进行预测,多元线性回归+特征数据归一化 #读取数据 %matplotlib notebook import tensorflow as tf import matplotlib. ...

  3. TensorFlow从0到1之TensorFlow实现多元线性回归(16)

    在 TensorFlow 实现简单线性回归的基础上,可通过在权重和占位符的声明中稍作修改来对相同的数据进行多元线性回归. 在多元线性回归的情况下,由于每个特征具有不同的值范围,归一化变得至关重要.这里 ...

  4. 机器学习与Tensorflow(1)——机器学习基本概念、tensorflow实现简单线性回归

    一.机器学习基本概念 1.训练集和测试集 训练集(training set/data)/训练样例(training examples): 用来进行训练,也就是产生模型或者算法的数据集 测试集(test ...

  5. 【TensorFlow篇】--Tensorflow框架初始,实现机器学习中多元线性回归

    一.前述 TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理.Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,T ...

  6. TensorFlow多元线性回归实现

    多元线性回归的具体实现 导入需要的所有软件包:   因为各特征的数据范围不同,需要归一化特征数据.为此定义一个归一化函数.另外,这里添加一个额外的固定输入值将权重和偏置结合起来.为此定义函数 appe ...

  7. R语言解读多元线性回归模型

    转载:http://blog.fens.me/r-multi-linear-regression/ 前言 本文接上一篇R语言解读一元线性回归模型.在许多生活和工作的实际问题中,影响因变量的因素可能不止 ...

  8. 利用R进行多元线性回归分析

    对于一个因变量y,n个自变量x1,...,xn,要如何判断y与这n个自变量之间是否存在线性关系呢? 肯定是要利用他们的数据集,假设数据集中有m个样本,那么,每个样本都分别对应着一个因变量和一个n维的自 ...

  9. 多元线性回归模型的特征压缩:岭回归和Lasso回归

    多元线性回归模型中,如果所有特征一起上,容易造成过拟合使测试数据误差方差过大:因此减少不必要的特征,简化模型是减小方差的一个重要步骤.除了直接对特征筛选,来也可以进行特征压缩,减少某些不重要的特征系数 ...

随机推荐

  1. Code Labels

    Code Labels Code labels are three-letter codes with which commit messages can be prefixed. CODE Labe ...

  2. 三剑客之awk

    简介 awk是一个强大的文本分析工具,相对于grep的查找,sed的编辑,awk在其对数据分析并生成报告时,显得尤为强大.简单来说awk就是把文件逐行的读入,以空格为默认分隔符将每行切片,切开的部分再 ...

  3. jenkins编辑报错Exception when publishing, exception message的解决办法

    jenkins编辑报错Exception when publishing, exception message的解决办法 查看目标主机的磁盘空间是否占满,清理磁盘空间即可

  4. MySQL使用root用户授权出现错误ERROR 1045 (28000) at line 2: Access denied for user 'root'@'%' (using password: YES)解决办法

    参考:https://blog.csdn.net/open_data/article/details/42873827 使用MySQL的root用户登录出现错误提示 ERROR 1045 (28000 ...

  5. ROS基础

    在ROS中启动Gazebo物理仿真环境 roslaunch gazebo_ros empty_world.launch 打开后一片漆黑是以为gazebo需要从国外的网站上下载模型,国内网络不行,一直下 ...

  6. [No000010D]Git6/9-分支管理

    分支就是科幻电影里面的平行宇宙,当你正在电脑前努力学习Git的时候,另一个你正在另一个平行宇宙里努力学习SVN. 如果两个平行宇宙互不干扰,那对现在的你也没啥影响.不过,在某个时间点,两个平行宇宙合并 ...

  7. 关于nginx重新编译

    nginx安装成功后,发现有一些其他模块没有编译进去,或者想额外添加一些模块,这时候就要重新编译nginx. 首先,查看之前编译的一些参数,比如: 1 2 3 4 5 [root@lmode ngin ...

  8. linux命令瞎记录find xargs

    1.创建多个文件 touch test{0..100}.txt 2.重定向 “>>” 追加重定向,追加内容,到文件的尾部 “>” 重定向,清除原文件里面所有内容,然后把内容追加到文件 ...

  9. PostgreSQL+PostGIS安装以及使用

    安装,参照:    https://www.cnblogs.com/ytwy/p/6817179.html 创建企业级地理文件数据库时报错," You must copy the lates ...

  10. manifold 微分流形上可以定义可微函数、切向量、切向量场、各种张量场等对象并建立其上的分析学,并可以赋予更复杂的几何结构以研究它们的性质。

    小结: 1.流形(英语:Manifolds)一般可以通过把许多平直的片折弯并粘连而成,是局部具有欧几里得空间性质的空间,是欧几里得空间中的曲线.曲面等概念的推广 2.描述一个流形往往需要不止一个“地图 ...