zjoi 力
显然fft维护卷积就可以了
发现fft里面会改变很多东西 要还原一下
#include <bits/stdc++.h>
#define dob complex<double>
using namespace std;
const int N=3e5;
const double pi=acos(-1.0);
dob a[N],a2[N],b[N];
int r[N],l;
double ans1[N],sum[N];
int n,m;
void fft(dob *a,int o)
{
for (int i=;i<n;i++)
if (i>r[i]) swap(a[i],a[r[i]]);
for (int i=;i<n;i*=)
{
dob wn(cos(pi/i),sin(pi*o/i)),x,y;
for (int j=;j<n;j+=(i*))
{
dob w(,);
for (int k=;k<i;k++,w*=wn)
{
x=a[j+k]; y=w*a[i+j+k];
a[j+k]=x+y,a[i+j+k]=x-y;
}
}
}
}
char s1[N],s2[N];
void query()
{
l=;
for (n = ; n <= m; n <<= ) l++;
for (int i=;i<n;i++) r[i]=(r[i/]/)|((i&)<<(l-));
fft(a,),
fft(b,);
for (int i=;i<n;i++) a[i]*=b[i];
fft(a,-);
for (int i=;i<=m;i++) sum[i]=a[i].real()/n;
}
int main()
{
cin>>n; int tmp=n;
for (int i=;i<=n-;i++) cin>>a[i];
memcpy(a2,a,sizeof(a));
for (int i=;i<=n-;i++) b[i]=1.0000000/i/i;
n--;m=n*;
query();
n=tmp;
for (int i=;i<=n-;i++)
ans1[i+]=sum[i];
memset(a,,sizeof(a));
memset(b,,sizeof(b));
memset(sum,,sizeof(sum));
n=tmp;
for (int i=;i<n;i++) a[n-i-]=a2[i];
for (int i=;i<=n-;i++) b[i]=1.0000000/i/i;
query();
n=tmp;
for (int i=;i<=n-;i++) ans1[i]-=sum[n-i];
for (int i=;i<=n;i++) printf("%.7f\n",ans1[i]);
return ;
}
zjoi 力的更多相关文章
- BZOJ3527[ZJOI]力
无题面神题 原题意: 求所有的Ei=Fi/qi. 题解: qi被除掉了,则原式中的qj可以忽略. 用a[i]表示q[i],用b[j-i]来表示±1/((j-i)^2)(j>i时为正,j<i ...
- 【BZOJ 3527】【ZJOI 2014】力
代换一下变成多项式卷积,这里是的答案是两个卷积相减,FFT求一下两个卷积就可以啦 详细的题解:http://www.cnblogs.com/iwtwiioi/p/4126284.html #inclu ...
- [ZJOI 2014]力
Description 给出n个数qi,给出Fj的定义如下: $$F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{i>j}\frac{q_i ...
- 解题:ZJOI 2014 力
题面 事实说明只会FFT板子是没有用的,还要把式子推成能用FFT/转化一下卷积的方式 虽然这个题不算难的多项式卷积 稍微化简一下可以发现实际是$q_i$和$\frac{1}{(i-j)^2}$在卷,然 ...
- 【ZJOI 2014】力
Problem Description 给出 \(n\) 个数 \(q_i\),给出 \(F_j\) 的定义如下: \[F_j=\sum_{i<j} \frac{q_iq_j}{(i-j)^2} ...
- Echarts3 关系图-力导向布局图
因为项目需要,要求实现类似力导图效果的图,我就瞄上了echarts. 注意事项1:由于我的项目要部署到内网,所以js文件要在本地,网上大多力导图都是echarts2的,而其又依赖zrender基础库, ...
- 游戏测评-桥梁建造系Poly Bridge破力桥?游戏测评
最近在b站看到了谜之声的视频:大家来造桥吧! 实在是太搞笑了,看到是一款新出不久还未正式发行的游戏,兴致一来便入手玩了玩.顺手也就写下了这篇测评. POLY BRIDGE 对这个游戏名怎么起个有趣的中 ...
- 5G为何采纳华为力挺的Polar码?一个通信工程师的大实话
Polar码被采纳为5G eMBB场景的控制信道编码,这两天连续被这条消息刷屏,连吃瓜群众都直呼好爽. 然而,随着媒体报道的持续发酵,真相在口口相传中变了形,不乏夸大不实之嫌,小编终于坐不住了,也想吐 ...
- php大力力 [050节] 兄弟连高洛峰 PHP教程 2014年[数据库、PDO教程]
php大力力 [050节] 兄弟连高洛峰 PHP教程 2014年[数据库.PDO教程] 第14章 数据库252.[2014]兄弟连高洛峰 PHP教程14.1.1 复习数据库[已发布,点击下载]253. ...
随机推荐
- linux系统中查看己设置iptables规则
1.iptables -L 查看filter表的iptables规则,包括所有的链.filter表包含INPUT.OUTPUT.FORWARD三个规则链. 说明:-L是--list的简写,作用是列出规 ...
- Jacob用法收集
介绍 Jacob 是Java-COM Bridge的缩写,它在Java与微软的COM组件之间构建一座桥梁.使用Jacob自带的DLL动态链接库,并通过JNI的方式实现了在Java平台上对COM程序的调 ...
- TCP/IP详解 卷1 第一章概述
第一章概述 1.2 分层 网络编程通常分不同层次进行开发,每一层负责不同的通信功能. 一个协议族比如TCP/IP,通常是一组不同层次上多个协议的组合.一般可以认为是是四层协议系统: 链路层:有时也称作 ...
- Bleve代码阅读(一)——新建索引
引言 Bleve是Golang实现的一个全文检索库,类似Lucene之于Java.在这里通过阅读其代码,来学习如何使用及定制检索功能.也是为了通过阅读代码,学习在具体环境下Golang的一些使用方式. ...
- POJ3635 Full Tank?【Dijkstra+DP】
题意: n个城市之间有m条双向路.每条路要耗费一定的油量.每个城市的油价是固定并且已经给出的.有q个询问,表示从城市s走到e,油箱的容量为c,求最便宜的方案. 思路: 用Dijkstra+Heap即可 ...
- Flask最强攻略 - 跟DragonFire学Flask - 第五篇 做一个用户登录之后查看学员信息的小例子
需求: 1. 用户名: oldboy 密码: oldboy123 2. 用户登录成功之后跳转到列表页面 3. 失败有消息提示,重新登录 4.点击学生名称之后,可以看到学生的详细信息 后端: from ...
- [转]mmap和madvise的使用
1. madvise的简介 madvise可以设置内存的分配方式或者说是分配的细节方式.具体参见linux man madvise. #include <sys/ty ...
- nginx入门三
负载均衡 upstream upstream app_server { server 127.0.0.1:8000; server 192.168.2.134:80; server 47.xx.xx. ...
- 【转】Python介绍
[转]Python介绍 本节内容 Python简史 Python是一门什么样的语言? Python的优点与缺点 Python解释器 一.Python简史 历史背景 在20世纪80年代,IBM和苹果已经 ...
- 【转】每天一个linux命令(1):ls命令
ls命令是linux下最常用的命令.ls命令就是list的缩写,缺省下ls用来打印出当前目录的清单.如果ls指定其他目录,那么就会显示指定目录里的文件及文件夹清单. 通过ls命令不仅可以查看linux ...