RandomForest中的feature_importance
随机森林算法(RandomForest)的输出有一个变量是 feature_importances_ ,翻译过来是 特征重要性,具体含义是什么,这里试着解释一下。
参考官网和其他资料可以发现,RF可以输出两种 feature_importance,分别是Variable importance和Gini importance,两者都是feature_importance,只是计算方法不同。
Variable importance
选定一个feature M,在所有OOB样本的feature M上人为添加噪声,再测试模型在OOB上的判断精确率,精确率相比没有噪声时下降了多少,就表示该特征有多重要。
假如一个feature对数据分类很重要,那么一旦这个特征的数据不再准确,对测试结果会造成较大的影响,而那些不重要的feature,即使受到噪声干扰,对测试结果也没什么影响。这就是 Variable importance 方法的朴素思想。
[添加噪声:这里官网给出的说法是 randomly permute the values of variable m in the oob cases,permute的含义我还不是很确定,有的说法是打乱顺序,有的说法是在数据上加入白噪声。]
Gini importance
选定一个feature M,统计RF的每一棵树中,由M形成的分支节点的Gini指数下降程度(或不纯度下降程度)之和,这就是M的importance。
两者对比来看,前者比后者计算量更大,后者只需要一边构建DT,一边做统计就可以。从sklearn的官方文档对feature_importances_参数的描述来看,sklearn应当是使用了Gini importance对feature进行排序,同时sklearn把所有的Gini importance以sum的方式做了归一化,得到了最终的feature_importances_输出参数。
参考文献:
RandomForest 官网 https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm
RandomForest中的feature_importance的更多相关文章
- Spark中决策树源码分析
1.Example 使用Spark MLlib中决策树分类器API,训练出一个决策树模型,使用Python开发. """ Decision Tree Classifica ...
- XGBOOST/GBDT,RandomForest/Bagging的比较
原创文章:http://blog.csdn.net/qccc_dm/article/details/63684453 首先XGBOOST,GBDT,RF都是集成算法,RF是Bagging的变体,与Ba ...
- R语言︱情感分析—基于监督算法R语言实现(二)
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:本文大多内容来自未出版的<数据 ...
- 机器学习算法总结(四)——GBDT与XGBOOST
Boosting方法实际上是采用加法模型与前向分布算法.在上一篇提到的Adaboost算法也可以用加法模型和前向分布算法来表示.以决策树为基学习器的提升方法称为提升树(Boosting Tree).对 ...
- 随机森林算法-Deep Dive
0-写在前面 随机森林,指的是利用多棵树对样本进行训练并预测的一种分类器.该分类器最早由Leo Breiman和Adele Cutler提出.简单来说,是一种bagging的思想,采用bootstra ...
- GB、GBDT、XGboost理解
GBDT和xgboost在竞赛和工业界使用都非常频繁,能有效的应用到分类.回归.排序问题,虽然使用起来不难,但是要能完整的理解还是有一点麻烦的.本文尝试一步一步梳理GB.GBDT.xgboost,它们 ...
- Python机器学习笔记 集成学习总结
集成学习(Ensemble learning)是使用一系列学习器进行学习,并使用某种规则把各个学习结果进行整合,从而获得比单个学习器显著优越的泛化性能.它不是一种单独的机器学习算法啊,而更像是一种优 ...
- Python开源框架
info:更多Django信息url:https://www.oschina.net/p/djangodetail: Django 是 Python 编程语言驱动的一个开源模型-视图-控制器(MVC) ...
- 原生xgboost中如何输出feature_importance
网上教程基本都是清一色的使用sklearn版本,此时的XGBClassifier有自带属性feature_importances_,而特征名称可以通过model._Booster.feature_na ...
随机推荐
- C# ConcurrentQueue实现
我们从C# Queue 和Stack的实现知道Queue是用数组来实现的,数组的元素不断的通过Array.Copy从一个数组移动到另一个数组,ConcurrentQueue我们需要关心2点:1线程安全 ...
- windows和linux文件输 - ftp
1. linux到linux的复制直接用scp命令 但是windows下就麻烦点, 安装winscp, 配置用户名和密码即可随意拖拽了. 下载地址: 需要linux电脑的用户名和密码即可 2. win ...
- Spark机器学习(11):协同过滤算法
协同过滤(Collaborative Filtering,CF)算法是一种常用的推荐算法,它的思想就是找出相似的用户或产品,向用户推荐相似的物品,或者把物品推荐给相似的用户.怎样评价用户对商品的偏好? ...
- libmongoc关于\$pullAll和\$addToSet的一个使用问题记录
问题描述及测试结果 在使用mongodb时,对一个document中的数组成员进行更新的时候,可以使用$pull $push $pop $addToSet $pullAll和$each $positi ...
- CSS中的偏僻知识点
一.css中的calc 在CSS中有calc属性用于尺寸的计算,可以让百分比和像素值进行运算. div {width : calc(100% - 30px);} 为了兼容性 /*Firefox*/ - ...
- 基于Centos搭建 Firekylin 个人网站
系统要求: CentOS 7.2 64 位操作系统 安装 Node.js 使用 yum 命令安装 Node.js curl --silent --location https://rpm.nodeso ...
- Nginx 限制访问速率
本文测试的nginx版本为nginx version: nginx/1.12.2 Nginx 提供了 limit_rate 和limit_rate_after,举个例子来说明一下在需要限速的站点 se ...
- Swift 4迁移总结:喜忧参半,新的起点
Swift 4迁移总结:喜忧参半,新的起点 每日一篇优秀博文 这次Swift 3 到 4 的迁移代码要改动的地方比较少,花了一个下午的时间就完成了迁移.Swift 把原来 4.0 的目标从 ABI 稳 ...
- 读“40 分,60 分,90 分”
原文链接: http://mp.weixin.qq.com/s?__biz=MzA5MjYyNzY1OQ==&mid=2650901947&idx=1&sn=89af64d3b ...
- 【Unity】序列化字典Dictionary的问题
问题:在C#脚本定义了public Dictionary字典,然而在编辑器检视面板Editor Inspector中看不到(即无法序列化字典).即不能在编辑器中拖拽给字典赋值. 目标:检视面板Insp ...