随机森林算法(RandomForest)的输出有一个变量是 feature_importances_ ,翻译过来是 特征重要性,具体含义是什么,这里试着解释一下。

参考官网和其他资料可以发现,RF可以输出两种 feature_importance,分别是Variable importance和Gini importance,两者都是feature_importance,只是计算方法不同。

Variable importance

选定一个feature M,在所有OOB样本的feature M上人为添加噪声,再测试模型在OOB上的判断精确率,精确率相比没有噪声时下降了多少,就表示该特征有多重要。

假如一个feature对数据分类很重要,那么一旦这个特征的数据不再准确,对测试结果会造成较大的影响,而那些不重要的feature,即使受到噪声干扰,对测试结果也没什么影响。这就是 Variable importance 方法的朴素思想。

[添加噪声:这里官网给出的说法是 randomly permute the values of variable m in the oob cases,permute的含义我还不是很确定,有的说法是打乱顺序,有的说法是在数据上加入白噪声。]

Gini importance

选定一个feature M,统计RF的每一棵树中,由M形成的分支节点的Gini指数下降程度(或不纯度下降程度)之和,这就是M的importance。

两者对比来看,前者比后者计算量更大,后者只需要一边构建DT,一边做统计就可以。从sklearn的官方文档对feature_importances_参数的描述来看,sklearn应当是使用了Gini importance对feature进行排序,同时sklearn把所有的Gini importance以sum的方式做了归一化,得到了最终的feature_importances_输出参数。

参考文献:

RandomForest 官网  https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm

RandomForest中的feature_importance的更多相关文章

  1. Spark中决策树源码分析

    1.Example 使用Spark MLlib中决策树分类器API,训练出一个决策树模型,使用Python开发. """ Decision Tree Classifica ...

  2. XGBOOST/GBDT,RandomForest/Bagging的比较

    原创文章:http://blog.csdn.net/qccc_dm/article/details/63684453 首先XGBOOST,GBDT,RF都是集成算法,RF是Bagging的变体,与Ba ...

  3. R语言︱情感分析—基于监督算法R语言实现(二)

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:本文大多内容来自未出版的<数据 ...

  4. 机器学习算法总结(四)——GBDT与XGBOOST

    Boosting方法实际上是采用加法模型与前向分布算法.在上一篇提到的Adaboost算法也可以用加法模型和前向分布算法来表示.以决策树为基学习器的提升方法称为提升树(Boosting Tree).对 ...

  5. 随机森林算法-Deep Dive

    0-写在前面 随机森林,指的是利用多棵树对样本进行训练并预测的一种分类器.该分类器最早由Leo Breiman和Adele Cutler提出.简单来说,是一种bagging的思想,采用bootstra ...

  6. GB、GBDT、XGboost理解

    GBDT和xgboost在竞赛和工业界使用都非常频繁,能有效的应用到分类.回归.排序问题,虽然使用起来不难,但是要能完整的理解还是有一点麻烦的.本文尝试一步一步梳理GB.GBDT.xgboost,它们 ...

  7. Python机器学习笔记 集成学习总结

    集成学习(Ensemble  learning)是使用一系列学习器进行学习,并使用某种规则把各个学习结果进行整合,从而获得比单个学习器显著优越的泛化性能.它不是一种单独的机器学习算法啊,而更像是一种优 ...

  8. Python开源框架

    info:更多Django信息url:https://www.oschina.net/p/djangodetail: Django 是 Python 编程语言驱动的一个开源模型-视图-控制器(MVC) ...

  9. 原生xgboost中如何输出feature_importance

    网上教程基本都是清一色的使用sklearn版本,此时的XGBClassifier有自带属性feature_importances_,而特征名称可以通过model._Booster.feature_na ...

随机推荐

  1. 六、Springboot 之 多配置文件

    说明:在程序开发过程中可能会有这样的需求:开发和部署的配置信息可能会不同,以传统的方式就是在配置文件里面写好配置,在部署的时候再去修改这些配置,这样肯定会有很多问题,比如忘记修改.修改错误等. 而Sp ...

  2. .ipynb文件转.py文件

    到要转的demo.ipynb所在目录下,然后输入命令: jupyter nbconvert --to script demo.ipynb

  3. 使用JDBC在MySQL数据库中快速批量插入数据

    使用JDBC连接MySQL数据库进行数据插入的时候,特别是大批量数据连续插入(10W+),如何提高效率呢? 在JDBC编程接口中Statement 有两个方法特别值得注意: void addBatch ...

  4. Fix Corrupt Blocks on HDFS

    来自:http://centoshowtos.org/hadoop/fix-corrupt-blocks-on-hdfs/ How do I know if my hadoop hdfs filesy ...

  5. settings.xml配置详解

    简单值 一半顶层settings元素是简单值,它们表示的一系列值可以配置Maven的核心行为:settings.xml中的简单顶层元素 < settings xmlns="http:/ ...

  6. 使用Genymotion模拟器调试出现INSTALL_FAILED_CPU_ABI_INCOMPATIBLE错误的解决办法

    如果遇到下面这种错误: 点击下载Genymotion-ARM-Translation.zip 百度云连接:http://pan.baidu.com/s/1o6ifjMM 将你的虚拟器启动起来,将下载好 ...

  7. VirtualBox安装64位系统

    2010-04-29    到引导区报错: This kernel requires an X86-64  CPU,but only detected an i686 CPU. 以我小学水平的英语理解 ...

  8. RabbitMQ使用技巧

    一. net客户端介绍    http://www.cnblogs.com/hsyzero/p/6297644.html 二. RabbitMQ消息应答 执行一个任务可能需要花费几秒钟,你可能会担心如 ...

  9. FeignClient使用

    在使用Spring Cloud开发微服务应用时中,各个微服务服务提供者都是以HTTP接口的形式对外提供服务,因此服务消费者在调用服务提供者时,通过HTTP Client的方式访问.当然我们可以使用JD ...

  10. MySQL的reset slave与reset slave all

    reset slave是各版本Mysql都有的功能,可以让slave忘记自己在master binary log中的复制位置. reset slave命令主要完成以下工作内容: -删除master.i ...