Spark Multilayer perceptron classifier (MLPC)多层感知器分类器
多层感知器分类器(MLPC)是基于前馈人工神经网络(ANN)的分类器。 MLPC由多个节点层组成。 每个层完全连接到网络中的下一层。 输入层中的节点表示输入数据。 所有其他节点,通过输入与节点的权重w和偏置b的线性组合,并应用激活函数,将输入映射到输出。 对于具有K + 1层的MLPC,这可以以矩阵形式写成如下:
中间层中的节点使用sigmoid(logistic)函数:
输出层中的节点使用softmax函数:
输出层中的节点数量N对应于类的数量。
MLPC采用反向传播学习模型(BP算法)。 我们使用用于优化的逻辑损失函数和L-BFGS作为优化程序。
导入包
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.Dataset
import org.apache.spark.sql.Row
import org.apache.spark.sql.DataFrame
import org.apache.spark.sql.Column
import org.apache.spark.sql.DataFrameReader
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.catalyst.encoders.ExpressionEncoder
import org.apache.spark.sql.Encoder
import org.apache.spark.sql.DataFrameStatFunctions
import org.apache.spark.sql.functions._ import org.apache.spark.ml.linalg.Vectors
import org.apache.spark.ml.feature.VectorAssembler
import org.apache.spark.ml.classification.MultilayerPerceptronClassifier
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
导入数据源
val spark = SparkSession.builder().appName("Spark Multilayer perceptron classifier").config("spark.some.config.option", "some-value").getOrCreate() // For implicit conversions like converting RDDs to DataFrames
import spark.implicits._ val dataList: List[(Double, String, Double, Double, String, Double, Double, Double, Double)] = List(
(0, "male", 37, 10, "no", 3, 18, 7, 4),
(0, "female", 27, 4, "no", 4, 14, 6, 4),
(0, "female", 32, 15, "yes", 1, 12, 1, 4),
(0, "male", 57, 15, "yes", 5, 18, 6, 5),
(0, "male", 22, 0.75, "no", 2, 17, 6, 3),
(0, "female", 32, 1.5, "no", 2, 17, 5, 5),
(0, "female", 22, 0.75, "no", 2, 12, 1, 3),
(0, "male", 57, 15, "yes", 2, 14, 4, 4),
(0, "female", 32, 15, "yes", 4, 16, 1, 2),
(0, "male", 22, 1.5, "no", 4, 14, 4, 5),
(0, "male", 37, 15, "yes", 2, 20, 7, 2),
(0, "male", 27, 4, "yes", 4, 18, 6, 4),
(0, "male", 47, 15, "yes", 5, 17, 6, 4),
(0, "female", 22, 1.5, "no", 2, 17, 5, 4),
(0, "female", 27, 4, "no", 4, 14, 5, 4),
(0, "female", 37, 15, "yes", 1, 17, 5, 5),
(0, "female", 37, 15, "yes", 2, 18, 4, 3),
(0, "female", 22, 0.75, "no", 3, 16, 5, 4),
(0, "female", 22, 1.5, "no", 2, 16, 5, 5),
(0, "female", 27, 10, "yes", 2, 14, 1, 5),
(0, "female", 22, 1.5, "no", 2, 16, 5, 5),
(0, "female", 22, 1.5, "no", 2, 16, 5, 5),
(0, "female", 27, 10, "yes", 4, 16, 5, 4),
(0, "female", 32, 10, "yes", 3, 14, 1, 5),
(0, "male", 37, 4, "yes", 2, 20, 6, 4),
(0, "female", 22, 1.5, "no", 2, 18, 5, 5),
(0, "female", 27, 7, "no", 4, 16, 1, 5),
(0, "male", 42, 15, "yes", 5, 20, 6, 4),
(0, "male", 27, 4, "yes", 3, 16, 5, 5),
(0, "female", 27, 4, "yes", 3, 17, 5, 4),
(0, "male", 42, 15, "yes", 4, 20, 6, 3),
(0, "female", 22, 1.5, "no", 3, 16, 5, 5),
(0, "male", 27, 0.417, "no", 4, 17, 6, 4),
(0, "female", 42, 15, "yes", 5, 14, 5, 4),
(0, "male", 32, 4, "yes", 1, 18, 6, 4),
(0, "female", 22, 1.5, "no", 4, 16, 5, 3),
(0, "female", 42, 15, "yes", 3, 12, 1, 4),
(0, "female", 22, 4, "no", 4, 17, 5, 5),
(0, "male", 22, 1.5, "yes", 1, 14, 3, 5),
(0, "female", 22, 0.75, "no", 3, 16, 1, 5),
(0, "male", 32, 10, "yes", 5, 20, 6, 5),
(0, "male", 52, 15, "yes", 5, 18, 6, 3),
(0, "female", 22, 0.417, "no", 5, 14, 1, 4),
(0, "female", 27, 4, "yes", 2, 18, 6, 1),
(0, "female", 32, 7, "yes", 5, 17, 5, 3),
(0, "male", 22, 4, "no", 3, 16, 5, 5),
(0, "female", 27, 7, "yes", 4, 18, 6, 5),
(0, "female", 42, 15, "yes", 2, 18, 5, 4),
(0, "male", 27, 1.5, "yes", 4, 16, 3, 5),
(0, "male", 42, 15, "yes", 2, 20, 6, 4),
(0, "female", 22, 0.75, "no", 5, 14, 3, 5),
(0, "male", 32, 7, "yes", 2, 20, 6, 4),
(0, "male", 27, 4, "yes", 5, 20, 6, 5),
(0, "male", 27, 10, "yes", 4, 20, 6, 4),
(0, "male", 22, 4, "no", 1, 18, 5, 5),
(0, "female", 37, 15, "yes", 4, 14, 3, 1),
(0, "male", 22, 1.5, "yes", 5, 16, 4, 4),
(0, "female", 37, 15, "yes", 4, 17, 1, 5),
(0, "female", 27, 0.75, "no", 4, 17, 5, 4),
(0, "male", 32, 10, "yes", 4, 20, 6, 4),
(0, "female", 47, 15, "yes", 5, 14, 7, 2),
(0, "male", 37, 10, "yes", 3, 20, 6, 4),
(0, "female", 22, 0.75, "no", 2, 16, 5, 5),
(0, "male", 27, 4, "no", 2, 18, 4, 5),
(0, "male", 32, 7, "no", 4, 20, 6, 4),
(0, "male", 42, 15, "yes", 2, 17, 3, 5),
(0, "male", 37, 10, "yes", 4, 20, 6, 4),
(0, "female", 47, 15, "yes", 3, 17, 6, 5),
(0, "female", 22, 1.5, "no", 5, 16, 5, 5),
(0, "female", 27, 1.5, "no", 2, 16, 6, 4),
(0, "female", 27, 4, "no", 3, 17, 5, 5),
(0, "female", 32, 10, "yes", 5, 14, 4, 5),
(0, "female", 22, 0.125, "no", 2, 12, 5, 5),
(0, "male", 47, 15, "yes", 4, 14, 4, 3),
(0, "male", 32, 15, "yes", 1, 14, 5, 5),
(0, "male", 27, 7, "yes", 4, 16, 5, 5),
(0, "female", 22, 1.5, "yes", 3, 16, 5, 5),
(0, "male", 27, 4, "yes", 3, 17, 6, 5),
(0, "female", 22, 1.5, "no", 3, 16, 5, 5),
(0, "male", 57, 15, "yes", 2, 14, 7, 2),
(0, "male", 17.5, 1.5, "yes", 3, 18, 6, 5),
(0, "male", 57, 15, "yes", 4, 20, 6, 5),
(0, "female", 22, 0.75, "no", 2, 16, 3, 4),
(0, "male", 42, 4, "no", 4, 17, 3, 3),
(0, "female", 22, 1.5, "yes", 4, 12, 1, 5),
(0, "female", 22, 0.417, "no", 1, 17, 6, 4),
(0, "female", 32, 15, "yes", 4, 17, 5, 5),
(0, "female", 27, 1.5, "no", 3, 18, 5, 2),
(0, "female", 22, 1.5, "yes", 3, 14, 1, 5),
(0, "female", 37, 15, "yes", 3, 14, 1, 4),
(0, "female", 32, 15, "yes", 4, 14, 3, 4),
(0, "male", 37, 10, "yes", 2, 14, 5, 3),
(0, "male", 37, 10, "yes", 4, 16, 5, 4),
(0, "male", 57, 15, "yes", 5, 20, 5, 3),
(0, "male", 27, 0.417, "no", 1, 16, 3, 4),
(0, "female", 42, 15, "yes", 5, 14, 1, 5),
(0, "male", 57, 15, "yes", 3, 16, 6, 1),
(0, "male", 37, 10, "yes", 1, 16, 6, 4),
(0, "male", 37, 15, "yes", 3, 17, 5, 5),
(0, "male", 37, 15, "yes", 4, 20, 6, 5),
(0, "female", 27, 10, "yes", 5, 14, 1, 5),
(0, "male", 37, 10, "yes", 2, 18, 6, 4),
(0, "female", 22, 0.125, "no", 4, 12, 4, 5),
(0, "male", 57, 15, "yes", 5, 20, 6, 5),
(0, "female", 37, 15, "yes", 4, 18, 6, 4),
(0, "male", 22, 4, "yes", 4, 14, 6, 4),
(0, "male", 27, 7, "yes", 4, 18, 5, 4),
(0, "male", 57, 15, "yes", 4, 20, 5, 4),
(0, "male", 32, 15, "yes", 3, 14, 6, 3),
(0, "female", 22, 1.5, "no", 2, 14, 5, 4),
(0, "female", 32, 7, "yes", 4, 17, 1, 5),
(0, "female", 37, 15, "yes", 4, 17, 6, 5),
(0, "female", 32, 1.5, "no", 5, 18, 5, 5),
(0, "male", 42, 10, "yes", 5, 20, 7, 4),
(0, "female", 27, 7, "no", 3, 16, 5, 4),
(0, "male", 37, 15, "no", 4, 20, 6, 5),
(0, "male", 37, 15, "yes", 4, 14, 3, 2),
(0, "male", 32, 10, "no", 5, 18, 6, 4),
(0, "female", 22, 0.75, "no", 4, 16, 1, 5),
(0, "female", 27, 7, "yes", 4, 12, 2, 4),
(0, "female", 27, 7, "yes", 2, 16, 2, 5),
(0, "female", 42, 15, "yes", 5, 18, 5, 4),
(0, "male", 42, 15, "yes", 4, 17, 5, 3),
(0, "female", 27, 7, "yes", 2, 16, 1, 2),
(0, "female", 22, 1.5, "no", 3, 16, 5, 5),
(0, "male", 37, 15, "yes", 5, 20, 6, 5),
(0, "female", 22, 0.125, "no", 2, 14, 4, 5),
(0, "male", 27, 1.5, "no", 4, 16, 5, 5),
(0, "male", 32, 1.5, "no", 2, 18, 6, 5),
(0, "male", 27, 1.5, "no", 2, 17, 6, 5),
(0, "female", 27, 10, "yes", 4, 16, 1, 3),
(0, "male", 42, 15, "yes", 4, 18, 6, 5),
(0, "female", 27, 1.5, "no", 2, 16, 6, 5),
(0, "male", 27, 4, "no", 2, 18, 6, 3),
(0, "female", 32, 10, "yes", 3, 14, 5, 3),
(0, "female", 32, 15, "yes", 3, 18, 5, 4),
(0, "female", 22, 0.75, "no", 2, 18, 6, 5),
(0, "female", 37, 15, "yes", 2, 16, 1, 4),
(0, "male", 27, 4, "yes", 4, 20, 5, 5),
(0, "male", 27, 4, "no", 1, 20, 5, 4),
(0, "female", 27, 10, "yes", 2, 12, 1, 4),
(0, "female", 32, 15, "yes", 5, 18, 6, 4),
(0, "male", 27, 7, "yes", 5, 12, 5, 3),
(0, "male", 52, 15, "yes", 2, 18, 5, 4),
(0, "male", 27, 4, "no", 3, 20, 6, 3),
(0, "male", 37, 4, "yes", 1, 18, 5, 4),
(0, "male", 27, 4, "yes", 4, 14, 5, 4),
(0, "female", 52, 15, "yes", 5, 12, 1, 3),
(0, "female", 57, 15, "yes", 4, 16, 6, 4),
(0, "male", 27, 7, "yes", 1, 16, 5, 4),
(0, "male", 37, 7, "yes", 4, 20, 6, 3),
(0, "male", 22, 0.75, "no", 2, 14, 4, 3),
(0, "male", 32, 4, "yes", 2, 18, 5, 3),
(0, "male", 37, 15, "yes", 4, 20, 6, 3),
(0, "male", 22, 0.75, "yes", 2, 14, 4, 3),
(0, "male", 42, 15, "yes", 4, 20, 6, 3),
(0, "female", 52, 15, "yes", 5, 17, 1, 1),
(0, "female", 37, 15, "yes", 4, 14, 1, 2),
(0, "male", 27, 7, "yes", 4, 14, 5, 3),
(0, "male", 32, 4, "yes", 2, 16, 5, 5),
(0, "female", 27, 4, "yes", 2, 18, 6, 5),
(0, "female", 27, 4, "yes", 2, 18, 5, 5),
(0, "male", 37, 15, "yes", 5, 18, 6, 5),
(0, "female", 47, 15, "yes", 5, 12, 5, 4),
(0, "female", 32, 10, "yes", 3, 17, 1, 4),
(0, "female", 27, 1.5, "yes", 4, 17, 1, 2),
(0, "female", 57, 15, "yes", 2, 18, 5, 2),
(0, "female", 22, 1.5, "no", 4, 14, 5, 4),
(0, "male", 42, 15, "yes", 3, 14, 3, 4),
(0, "male", 57, 15, "yes", 4, 9, 2, 2),
(0, "male", 57, 15, "yes", 4, 20, 6, 5),
(0, "female", 22, 0.125, "no", 4, 14, 4, 5),
(0, "female", 32, 10, "yes", 4, 14, 1, 5),
(0, "female", 42, 15, "yes", 3, 18, 5, 4),
(0, "female", 27, 1.5, "no", 2, 18, 6, 5),
(0, "male", 32, 0.125, "yes", 2, 18, 5, 2),
(0, "female", 27, 4, "no", 3, 16, 5, 4),
(0, "female", 27, 10, "yes", 2, 16, 1, 4),
(0, "female", 32, 7, "yes", 4, 16, 1, 3),
(0, "female", 37, 15, "yes", 4, 14, 5, 4),
(0, "female", 42, 15, "yes", 5, 17, 6, 2),
(0, "male", 32, 1.5, "yes", 4, 14, 6, 5),
(0, "female", 32, 4, "yes", 3, 17, 5, 3),
(0, "female", 37, 7, "no", 4, 18, 5, 5),
(0, "female", 22, 0.417, "yes", 3, 14, 3, 5),
(0, "female", 27, 7, "yes", 4, 14, 1, 5),
(0, "male", 27, 0.75, "no", 3, 16, 5, 5),
(0, "male", 27, 4, "yes", 2, 20, 5, 5),
(0, "male", 32, 10, "yes", 4, 16, 4, 5),
(0, "male", 32, 15, "yes", 1, 14, 5, 5),
(0, "male", 22, 0.75, "no", 3, 17, 4, 5),
(0, "female", 27, 7, "yes", 4, 17, 1, 4),
(0, "male", 27, 0.417, "yes", 4, 20, 5, 4),
(0, "male", 37, 15, "yes", 4, 20, 5, 4),
(0, "female", 37, 15, "yes", 2, 14, 1, 3),
(0, "male", 22, 4, "yes", 1, 18, 5, 4),
(0, "male", 37, 15, "yes", 4, 17, 5, 3),
(0, "female", 22, 1.5, "no", 2, 14, 4, 5),
(0, "male", 52, 15, "yes", 4, 14, 6, 2),
(0, "female", 22, 1.5, "no", 4, 17, 5, 5),
(0, "male", 32, 4, "yes", 5, 14, 3, 5),
(0, "male", 32, 4, "yes", 2, 14, 3, 5),
(0, "female", 22, 1.5, "no", 3, 16, 6, 5),
(0, "male", 27, 0.75, "no", 2, 18, 3, 3),
(0, "female", 22, 7, "yes", 2, 14, 5, 2),
(0, "female", 27, 0.75, "no", 2, 17, 5, 3),
(0, "female", 37, 15, "yes", 4, 12, 1, 2),
(0, "female", 22, 1.5, "no", 1, 14, 1, 5),
(0, "female", 37, 10, "no", 2, 12, 4, 4),
(0, "female", 37, 15, "yes", 4, 18, 5, 3),
(0, "female", 42, 15, "yes", 3, 12, 3, 3),
(0, "male", 22, 4, "no", 2, 18, 5, 5),
(0, "male", 52, 7, "yes", 2, 20, 6, 2),
(0, "male", 27, 0.75, "no", 2, 17, 5, 5),
(0, "female", 27, 4, "no", 2, 17, 4, 5),
(0, "male", 42, 1.5, "no", 5, 20, 6, 5),
(0, "male", 22, 1.5, "no", 4, 17, 6, 5),
(0, "male", 22, 4, "no", 4, 17, 5, 3),
(0, "female", 22, 4, "yes", 1, 14, 5, 4),
(0, "male", 37, 15, "yes", 5, 20, 4, 5),
(0, "female", 37, 10, "yes", 3, 16, 6, 3),
(0, "male", 42, 15, "yes", 4, 17, 6, 5),
(0, "female", 47, 15, "yes", 4, 17, 5, 5),
(0, "male", 22, 1.5, "no", 4, 16, 5, 4),
(0, "female", 32, 10, "yes", 3, 12, 1, 4),
(0, "female", 22, 7, "yes", 1, 14, 3, 5),
(0, "female", 32, 10, "yes", 4, 17, 5, 4),
(0, "male", 27, 1.5, "yes", 2, 16, 2, 4),
(0, "male", 37, 15, "yes", 4, 14, 5, 5),
(0, "male", 42, 4, "yes", 3, 14, 4, 5),
(0, "female", 37, 15, "yes", 5, 14, 5, 4),
(0, "female", 32, 7, "yes", 4, 17, 5, 5),
(0, "female", 42, 15, "yes", 4, 18, 6, 5),
(0, "male", 27, 4, "no", 4, 18, 6, 4),
(0, "male", 22, 0.75, "no", 4, 18, 6, 5),
(0, "male", 27, 4, "yes", 4, 14, 5, 3),
(0, "female", 22, 0.75, "no", 5, 18, 1, 5),
(0, "female", 52, 15, "yes", 5, 9, 5, 5),
(0, "male", 32, 10, "yes", 3, 14, 5, 5),
(0, "female", 37, 15, "yes", 4, 16, 4, 4),
(0, "male", 32, 7, "yes", 2, 20, 5, 4),
(0, "female", 42, 15, "yes", 3, 18, 1, 4),
(0, "male", 32, 15, "yes", 1, 16, 5, 5),
(0, "male", 27, 4, "yes", 3, 18, 5, 5),
(0, "female", 32, 15, "yes", 4, 12, 3, 4),
(0, "male", 22, 0.75, "yes", 3, 14, 2, 4),
(0, "female", 22, 1.5, "no", 3, 16, 5, 3),
(0, "female", 42, 15, "yes", 4, 14, 3, 5),
(0, "female", 52, 15, "yes", 3, 16, 5, 4),
(0, "male", 37, 15, "yes", 5, 20, 6, 4),
(0, "female", 47, 15, "yes", 4, 12, 2, 3),
(0, "male", 57, 15, "yes", 2, 20, 6, 4),
(0, "male", 32, 7, "yes", 4, 17, 5, 5),
(0, "female", 27, 7, "yes", 4, 17, 1, 4),
(0, "male", 22, 1.5, "no", 1, 18, 6, 5),
(0, "female", 22, 4, "yes", 3, 9, 1, 4),
(0, "female", 22, 1.5, "no", 2, 14, 1, 5),
(0, "male", 42, 15, "yes", 2, 20, 6, 4),
(0, "male", 57, 15, "yes", 4, 9, 2, 4),
(0, "female", 27, 7, "yes", 2, 18, 1, 5),
(0, "female", 22, 4, "yes", 3, 14, 1, 5),
(0, "male", 37, 15, "yes", 4, 14, 5, 3),
(0, "male", 32, 7, "yes", 1, 18, 6, 4),
(0, "female", 22, 1.5, "no", 2, 14, 5, 5),
(0, "female", 22, 1.5, "yes", 3, 12, 1, 3),
(0, "male", 52, 15, "yes", 2, 14, 5, 5),
(0, "female", 37, 15, "yes", 2, 14, 1, 1),
(0, "female", 32, 10, "yes", 2, 14, 5, 5),
(0, "male", 42, 15, "yes", 4, 20, 4, 5),
(0, "female", 27, 4, "yes", 3, 18, 4, 5),
(0, "male", 37, 15, "yes", 4, 20, 6, 5),
(0, "male", 27, 1.5, "no", 3, 18, 5, 5),
(0, "female", 22, 0.125, "no", 2, 16, 6, 3),
(0, "male", 32, 10, "yes", 2, 20, 6, 3),
(0, "female", 27, 4, "no", 4, 18, 5, 4),
(0, "female", 27, 7, "yes", 2, 12, 5, 1),
(0, "male", 32, 4, "yes", 5, 18, 6, 3),
(0, "female", 37, 15, "yes", 2, 17, 5, 5),
(0, "male", 47, 15, "no", 4, 20, 6, 4),
(0, "male", 27, 1.5, "no", 1, 18, 5, 5),
(0, "male", 37, 15, "yes", 4, 20, 6, 4),
(0, "female", 32, 15, "yes", 4, 18, 1, 4),
(0, "female", 32, 7, "yes", 4, 17, 5, 4),
(0, "female", 42, 15, "yes", 3, 14, 1, 3),
(0, "female", 27, 7, "yes", 3, 16, 1, 4),
(0, "male", 27, 1.5, "no", 3, 16, 4, 2),
(0, "male", 22, 1.5, "no", 3, 16, 3, 5),
(0, "male", 27, 4, "yes", 3, 16, 4, 2),
(0, "female", 27, 7, "yes", 3, 12, 1, 2),
(0, "female", 37, 15, "yes", 2, 18, 5, 4),
(0, "female", 37, 7, "yes", 3, 14, 4, 4),
(0, "male", 22, 1.5, "no", 2, 16, 5, 5),
(0, "male", 37, 15, "yes", 5, 20, 5, 4),
(0, "female", 22, 1.5, "no", 4, 16, 5, 3),
(0, "female", 32, 10, "yes", 4, 16, 1, 5),
(0, "male", 27, 4, "no", 2, 17, 5, 3),
(0, "female", 22, 0.417, "no", 4, 14, 5, 5),
(0, "female", 27, 4, "no", 2, 18, 5, 5),
(0, "male", 37, 15, "yes", 4, 18, 5, 3),
(0, "male", 37, 10, "yes", 5, 20, 7, 4),
(0, "female", 27, 7, "yes", 2, 14, 4, 2),
(0, "male", 32, 4, "yes", 2, 16, 5, 5),
(0, "male", 32, 4, "yes", 2, 16, 6, 4),
(0, "male", 22, 1.5, "no", 3, 18, 4, 5),
(0, "female", 22, 4, "yes", 4, 14, 3, 4),
(0, "female", 17.5, 0.75, "no", 2, 18, 5, 4),
(0, "male", 32, 10, "yes", 4, 20, 4, 5),
(0, "female", 32, 0.75, "no", 5, 14, 3, 3),
(0, "male", 37, 15, "yes", 4, 17, 5, 3),
(0, "male", 32, 4, "no", 3, 14, 4, 5),
(0, "female", 27, 1.5, "no", 2, 17, 3, 2),
(0, "female", 22, 7, "yes", 4, 14, 1, 5),
(0, "male", 47, 15, "yes", 5, 14, 6, 5),
(0, "male", 27, 4, "yes", 1, 16, 4, 4),
(0, "female", 37, 15, "yes", 5, 14, 1, 3),
(0, "male", 42, 4, "yes", 4, 18, 5, 5),
(0, "female", 32, 4, "yes", 2, 14, 1, 5),
(0, "male", 52, 15, "yes", 2, 14, 7, 4),
(0, "female", 22, 1.5, "no", 2, 16, 1, 4),
(0, "male", 52, 15, "yes", 4, 12, 2, 4),
(0, "female", 22, 0.417, "no", 3, 17, 1, 5),
(0, "female", 22, 1.5, "no", 2, 16, 5, 5),
(0, "male", 27, 4, "yes", 4, 20, 6, 4),
(0, "female", 32, 15, "yes", 4, 14, 1, 5),
(0, "female", 27, 1.5, "no", 2, 16, 3, 5),
(0, "male", 32, 4, "no", 1, 20, 6, 5),
(0, "male", 37, 15, "yes", 3, 20, 6, 4),
(0, "female", 32, 10, "no", 2, 16, 6, 5),
(0, "female", 32, 10, "yes", 5, 14, 5, 5),
(0, "male", 37, 1.5, "yes", 4, 18, 5, 3),
(0, "male", 32, 1.5, "no", 2, 18, 4, 4),
(0, "female", 32, 10, "yes", 4, 14, 1, 4),
(0, "female", 47, 15, "yes", 4, 18, 5, 4),
(0, "female", 27, 10, "yes", 5, 12, 1, 5),
(0, "male", 27, 4, "yes", 3, 16, 4, 5),
(0, "female", 37, 15, "yes", 4, 12, 4, 2),
(0, "female", 27, 0.75, "no", 4, 16, 5, 5),
(0, "female", 37, 15, "yes", 4, 16, 1, 5),
(0, "female", 32, 15, "yes", 3, 16, 1, 5),
(0, "female", 27, 10, "yes", 2, 16, 1, 5),
(0, "male", 27, 7, "no", 2, 20, 6, 5),
(0, "female", 37, 15, "yes", 2, 14, 1, 3),
(0, "male", 27, 1.5, "yes", 2, 17, 4, 4),
(0, "female", 22, 0.75, "yes", 2, 14, 1, 5),
(0, "male", 22, 4, "yes", 4, 14, 2, 4),
(0, "male", 42, 0.125, "no", 4, 17, 6, 4),
(0, "male", 27, 1.5, "yes", 4, 18, 6, 5),
(0, "male", 27, 7, "yes", 3, 16, 6, 3),
(0, "female", 52, 15, "yes", 4, 14, 1, 3),
(0, "male", 27, 1.5, "no", 5, 20, 5, 2),
(0, "female", 27, 1.5, "no", 2, 16, 5, 5),
(0, "female", 27, 1.5, "no", 3, 17, 5, 5),
(0, "male", 22, 0.125, "no", 5, 16, 4, 4),
(0, "female", 27, 4, "yes", 4, 16, 1, 5),
(0, "female", 27, 4, "yes", 4, 12, 1, 5),
(0, "female", 47, 15, "yes", 2, 14, 5, 5),
(0, "female", 32, 15, "yes", 3, 14, 5, 3),
(0, "male", 42, 7, "yes", 2, 16, 5, 5),
(0, "male", 22, 0.75, "no", 4, 16, 6, 4),
(0, "male", 27, 0.125, "no", 3, 20, 6, 5),
(0, "male", 32, 10, "yes", 3, 20, 6, 5),
(0, "female", 22, 0.417, "no", 5, 14, 4, 5),
(0, "female", 47, 15, "yes", 5, 14, 1, 4),
(0, "female", 32, 10, "yes", 3, 14, 1, 5),
(0, "male", 57, 15, "yes", 4, 17, 5, 5),
(0, "male", 27, 4, "yes", 3, 20, 6, 5),
(0, "female", 32, 7, "yes", 4, 17, 1, 5),
(0, "female", 37, 10, "yes", 4, 16, 1, 5),
(0, "female", 32, 10, "yes", 1, 18, 1, 4),
(0, "female", 22, 4, "no", 3, 14, 1, 4),
(0, "female", 27, 7, "yes", 4, 14, 3, 2),
(0, "male", 57, 15, "yes", 5, 18, 5, 2),
(0, "male", 32, 7, "yes", 2, 18, 5, 5),
(0, "female", 27, 1.5, "no", 4, 17, 1, 3),
(0, "male", 22, 1.5, "no", 4, 14, 5, 5),
(0, "female", 22, 1.5, "yes", 4, 14, 5, 4),
(0, "female", 32, 7, "yes", 3, 16, 1, 5),
(0, "female", 47, 15, "yes", 3, 16, 5, 4),
(0, "female", 22, 0.75, "no", 3, 16, 1, 5),
(0, "female", 22, 1.5, "yes", 2, 14, 5, 5),
(0, "female", 27, 4, "yes", 1, 16, 5, 5),
(0, "male", 52, 15, "yes", 4, 16, 5, 5),
(0, "male", 32, 10, "yes", 4, 20, 6, 5),
(0, "male", 47, 15, "yes", 4, 16, 6, 4),
(0, "female", 27, 7, "yes", 2, 14, 1, 2),
(0, "female", 22, 1.5, "no", 4, 14, 4, 5),
(0, "female", 32, 10, "yes", 2, 16, 5, 4),
(0, "female", 22, 0.75, "no", 2, 16, 5, 4),
(0, "female", 22, 1.5, "no", 2, 16, 5, 5),
(0, "female", 42, 15, "yes", 3, 18, 6, 4),
(0, "female", 27, 7, "yes", 5, 14, 4, 5),
(0, "male", 42, 15, "yes", 4, 16, 4, 4),
(0, "female", 57, 15, "yes", 3, 18, 5, 2),
(0, "male", 42, 15, "yes", 3, 18, 6, 2),
(0, "female", 32, 7, "yes", 2, 14, 1, 2),
(0, "male", 22, 4, "no", 5, 12, 4, 5),
(0, "female", 22, 1.5, "no", 1, 16, 6, 5),
(0, "female", 22, 0.75, "no", 1, 14, 4, 5),
(0, "female", 32, 15, "yes", 4, 12, 1, 5),
(0, "male", 22, 1.5, "no", 2, 18, 5, 3),
(0, "male", 27, 4, "yes", 5, 17, 2, 5),
(0, "female", 27, 4, "yes", 4, 12, 1, 5),
(0, "male", 42, 15, "yes", 5, 18, 5, 4),
(0, "male", 32, 1.5, "no", 2, 20, 7, 3),
(0, "male", 57, 15, "no", 4, 9, 3, 1),
(0, "male", 37, 7, "no", 4, 18, 5, 5),
(0, "male", 52, 15, "yes", 2, 17, 5, 4),
(0, "male", 47, 15, "yes", 4, 17, 6, 5),
(0, "female", 27, 7, "no", 2, 17, 5, 4),
(0, "female", 27, 7, "yes", 4, 14, 5, 5),
(0, "female", 22, 4, "no", 2, 14, 3, 3),
(0, "male", 37, 7, "yes", 2, 20, 6, 5),
(0, "male", 27, 7, "no", 4, 12, 4, 3),
(0, "male", 42, 10, "yes", 4, 18, 6, 4),
(0, "female", 22, 1.5, "no", 3, 14, 1, 5),
(0, "female", 22, 4, "yes", 2, 14, 1, 3),
(0, "female", 57, 15, "no", 4, 20, 6, 5),
(0, "male", 37, 15, "yes", 4, 14, 4, 3),
(0, "female", 27, 7, "yes", 3, 18, 5, 5),
(0, "female", 17.5, 10, "no", 4, 14, 4, 5),
(0, "male", 22, 4, "yes", 4, 16, 5, 5),
(0, "female", 27, 4, "yes", 2, 16, 1, 4),
(0, "female", 37, 15, "yes", 2, 14, 5, 1),
(0, "female", 22, 1.5, "no", 5, 14, 1, 4),
(0, "male", 27, 7, "yes", 2, 20, 5, 4),
(0, "male", 27, 4, "yes", 4, 14, 5, 5),
(0, "male", 22, 0.125, "no", 1, 16, 3, 5),
(0, "female", 27, 7, "yes", 4, 14, 1, 4),
(0, "female", 32, 15, "yes", 5, 16, 5, 3),
(0, "male", 32, 10, "yes", 4, 18, 5, 4),
(0, "female", 32, 15, "yes", 2, 14, 3, 4),
(0, "female", 22, 1.5, "no", 3, 17, 5, 5),
(0, "male", 27, 4, "yes", 4, 17, 4, 4),
(0, "female", 52, 15, "yes", 5, 14, 1, 5),
(0, "female", 27, 7, "yes", 2, 12, 1, 2),
(0, "female", 27, 7, "yes", 3, 12, 1, 4),
(0, "female", 42, 15, "yes", 2, 14, 1, 4),
(0, "female", 42, 15, "yes", 4, 14, 5, 4),
(0, "male", 27, 7, "yes", 4, 14, 3, 3),
(0, "male", 27, 7, "yes", 2, 20, 6, 2),
(0, "female", 42, 15, "yes", 3, 12, 3, 3),
(0, "male", 27, 4, "yes", 3, 16, 3, 5),
(0, "female", 27, 7, "yes", 3, 14, 1, 4),
(0, "female", 22, 1.5, "no", 2, 14, 4, 5),
(0, "female", 27, 4, "yes", 4, 14, 1, 4),
(0, "female", 22, 4, "no", 4, 14, 5, 5),
(0, "female", 22, 1.5, "no", 2, 16, 4, 5),
(0, "male", 47, 15, "no", 4, 14, 5, 4),
(0, "male", 37, 10, "yes", 2, 18, 6, 2),
(0, "male", 37, 15, "yes", 3, 17, 5, 4),
(0, "female", 27, 4, "yes", 2, 16, 1, 4),
(3, "male", 27, 1.5, "no", 3, 18, 4, 4),
(3, "female", 27, 4, "yes", 3, 17, 1, 5),
(7, "male", 37, 15, "yes", 5, 18, 6, 2),
(12, "female", 32, 10, "yes", 3, 17, 5, 2),
(1, "male", 22, 0.125, "no", 4, 16, 5, 5),
(1, "female", 22, 1.5, "yes", 2, 14, 1, 5),
(12, "male", 37, 15, "yes", 4, 14, 5, 2),
(7, "female", 22, 1.5, "no", 2, 14, 3, 4),
(2, "male", 37, 15, "yes", 2, 18, 6, 4),
(3, "female", 32, 15, "yes", 4, 12, 3, 2),
(1, "female", 37, 15, "yes", 4, 14, 4, 2),
(7, "female", 42, 15, "yes", 3, 17, 1, 4),
(12, "female", 42, 15, "yes", 5, 9, 4, 1),
(12, "male", 37, 10, "yes", 2, 20, 6, 2),
(12, "female", 32, 15, "yes", 3, 14, 1, 2),
(3, "male", 27, 4, "no", 1, 18, 6, 5),
(7, "male", 37, 10, "yes", 2, 18, 7, 3),
(7, "female", 27, 4, "no", 3, 17, 5, 5),
(1, "male", 42, 15, "yes", 4, 16, 5, 5),
(1, "female", 47, 15, "yes", 5, 14, 4, 5),
(7, "female", 27, 4, "yes", 3, 18, 5, 4),
(1, "female", 27, 7, "yes", 5, 14, 1, 4),
(12, "male", 27, 1.5, "yes", 3, 17, 5, 4),
(12, "female", 27, 7, "yes", 4, 14, 6, 2),
(3, "female", 42, 15, "yes", 4, 16, 5, 4),
(7, "female", 27, 10, "yes", 4, 12, 7, 3),
(1, "male", 27, 1.5, "no", 2, 18, 5, 2),
(1, "male", 32, 4, "no", 4, 20, 6, 4),
(1, "female", 27, 7, "yes", 3, 14, 1, 3),
(3, "female", 32, 10, "yes", 4, 14, 1, 4),
(3, "male", 27, 4, "yes", 2, 18, 7, 2),
(1, "female", 17.5, 0.75, "no", 5, 14, 4, 5),
(1, "female", 32, 10, "yes", 4, 18, 1, 5),
(7, "female", 32, 7, "yes", 2, 17, 6, 4),
(7, "male", 37, 15, "yes", 2, 20, 6, 4),
(7, "female", 37, 10, "no", 1, 20, 5, 3),
(12, "female", 32, 10, "yes", 2, 16, 5, 5),
(7, "male", 52, 15, "yes", 2, 20, 6, 4),
(7, "female", 42, 15, "yes", 1, 12, 1, 3),
(1, "male", 52, 15, "yes", 2, 20, 6, 3),
(2, "male", 37, 15, "yes", 3, 18, 6, 5),
(12, "female", 22, 4, "no", 3, 12, 3, 4),
(12, "male", 27, 7, "yes", 1, 18, 6, 2),
(1, "male", 27, 4, "yes", 3, 18, 5, 5),
(12, "male", 47, 15, "yes", 4, 17, 6, 5),
(12, "female", 42, 15, "yes", 4, 12, 1, 1),
(7, "male", 27, 4, "no", 3, 14, 3, 4),
(7, "female", 32, 7, "yes", 4, 18, 4, 5),
(1, "male", 32, 0.417, "yes", 3, 12, 3, 4),
(3, "male", 47, 15, "yes", 5, 16, 5, 4),
(12, "male", 37, 15, "yes", 2, 20, 5, 4),
(7, "male", 22, 4, "yes", 2, 17, 6, 4),
(1, "male", 27, 4, "no", 2, 14, 4, 5),
(7, "female", 52, 15, "yes", 5, 16, 1, 3),
(1, "male", 27, 4, "no", 3, 14, 3, 3),
(1, "female", 27, 10, "yes", 4, 16, 1, 4),
(1, "male", 32, 7, "yes", 3, 14, 7, 4),
(7, "male", 32, 7, "yes", 2, 18, 4, 1),
(3, "male", 22, 1.5, "no", 1, 14, 3, 2),
(7, "male", 22, 4, "yes", 3, 18, 6, 4),
(7, "male", 42, 15, "yes", 4, 20, 6, 4),
(2, "female", 57, 15, "yes", 1, 18, 5, 4),
(7, "female", 32, 4, "yes", 3, 18, 5, 2),
(1, "male", 27, 4, "yes", 1, 16, 4, 4),
(7, "male", 32, 7, "yes", 4, 16, 1, 4),
(2, "male", 57, 15, "yes", 1, 17, 4, 4),
(7, "female", 42, 15, "yes", 4, 14, 5, 2),
(7, "male", 37, 10, "yes", 1, 18, 5, 3),
(3, "male", 42, 15, "yes", 3, 17, 6, 1),
(1, "female", 52, 15, "yes", 3, 14, 4, 4),
(2, "female", 27, 7, "yes", 3, 17, 5, 3),
(12, "male", 32, 7, "yes", 2, 12, 4, 2),
(1, "male", 22, 4, "no", 4, 14, 2, 5),
(3, "male", 27, 7, "yes", 3, 18, 6, 4),
(12, "female", 37, 15, "yes", 1, 18, 5, 5),
(7, "female", 32, 15, "yes", 3, 17, 1, 3),
(7, "female", 27, 7, "no", 2, 17, 5, 5),
(1, "female", 32, 7, "yes", 3, 17, 5, 3),
(1, "male", 32, 1.5, "yes", 2, 14, 2, 4),
(12, "female", 42, 15, "yes", 4, 14, 1, 2),
(7, "male", 32, 10, "yes", 3, 14, 5, 4),
(7, "male", 37, 4, "yes", 1, 20, 6, 3),
(1, "female", 27, 4, "yes", 2, 16, 5, 3),
(12, "female", 42, 15, "yes", 3, 14, 4, 3),
(1, "male", 27, 10, "yes", 5, 20, 6, 5),
(12, "male", 37, 10, "yes", 2, 20, 6, 2),
(12, "female", 27, 7, "yes", 1, 14, 3, 3),
(3, "female", 27, 7, "yes", 4, 12, 1, 2),
(3, "male", 32, 10, "yes", 2, 14, 4, 4),
(12, "female", 17.5, 0.75, "yes", 2, 12, 1, 3),
(12, "female", 32, 15, "yes", 3, 18, 5, 4),
(2, "female", 22, 7, "no", 4, 14, 4, 3),
(1, "male", 32, 7, "yes", 4, 20, 6, 5),
(7, "male", 27, 4, "yes", 2, 18, 6, 2),
(1, "female", 22, 1.5, "yes", 5, 14, 5, 3),
(12, "female", 32, 15, "no", 3, 17, 5, 1),
(12, "female", 42, 15, "yes", 2, 12, 1, 2),
(7, "male", 42, 15, "yes", 3, 20, 5, 4),
(12, "male", 32, 10, "no", 2, 18, 4, 2),
(12, "female", 32, 15, "yes", 3, 9, 1, 1),
(7, "male", 57, 15, "yes", 5, 20, 4, 5),
(12, "male", 47, 15, "yes", 4, 20, 6, 4),
(2, "female", 42, 15, "yes", 2, 17, 6, 3),
(12, "male", 37, 15, "yes", 3, 17, 6, 3),
(12, "male", 37, 15, "yes", 5, 17, 5, 2),
(7, "male", 27, 10, "yes", 2, 20, 6, 4),
(2, "male", 37, 15, "yes", 2, 16, 5, 4),
(12, "female", 32, 15, "yes", 1, 14, 5, 2),
(7, "male", 32, 10, "yes", 3, 17, 6, 3),
(2, "male", 37, 15, "yes", 4, 18, 5, 1),
(7, "female", 27, 1.5, "no", 2, 17, 5, 5),
(3, "female", 47, 15, "yes", 2, 17, 5, 2),
(12, "male", 37, 15, "yes", 2, 17, 5, 4),
(12, "female", 27, 4, "no", 2, 14, 5, 5),
(2, "female", 27, 10, "yes", 4, 14, 1, 5),
(1, "female", 22, 4, "yes", 3, 16, 1, 3),
(12, "male", 52, 7, "no", 4, 16, 5, 5),
(2, "female", 27, 4, "yes", 1, 16, 3, 5),
(7, "female", 37, 15, "yes", 2, 17, 6, 4),
(2, "female", 27, 4, "no", 1, 17, 3, 1),
(12, "female", 17.5, 0.75, "yes", 2, 12, 3, 5),
(7, "female", 32, 15, "yes", 5, 18, 5, 4),
(7, "female", 22, 4, "no", 1, 16, 3, 5),
(2, "male", 32, 4, "yes", 4, 18, 6, 4),
(1, "female", 22, 1.5, "yes", 3, 18, 5, 2),
(3, "female", 42, 15, "yes", 2, 17, 5, 4),
(1, "male", 32, 7, "yes", 4, 16, 4, 4),
(12, "male", 37, 15, "no", 3, 14, 6, 2),
(1, "male", 42, 15, "yes", 3, 16, 6, 3),
(1, "male", 27, 4, "yes", 1, 18, 5, 4),
(2, "male", 37, 15, "yes", 4, 20, 7, 3),
(7, "male", 37, 15, "yes", 3, 20, 6, 4),
(3, "male", 22, 1.5, "no", 2, 12, 3, 3),
(3, "male", 32, 4, "yes", 3, 20, 6, 2),
(2, "male", 32, 15, "yes", 5, 20, 6, 5),
(12, "female", 52, 15, "yes", 1, 18, 5, 5),
(12, "male", 47, 15, "no", 1, 18, 6, 5),
(3, "female", 32, 15, "yes", 4, 16, 4, 4),
(7, "female", 32, 15, "yes", 3, 14, 3, 2),
(7, "female", 27, 7, "yes", 4, 16, 1, 2),
(12, "male", 42, 15, "yes", 3, 18, 6, 2),
(7, "female", 42, 15, "yes", 2, 14, 3, 2),
(12, "male", 27, 7, "yes", 2, 17, 5, 4),
(3, "male", 32, 10, "yes", 4, 14, 4, 3),
(7, "male", 47, 15, "yes", 3, 16, 4, 2),
(1, "male", 22, 1.5, "yes", 1, 12, 2, 5),
(7, "female", 32, 10, "yes", 2, 18, 5, 4),
(2, "male", 32, 10, "yes", 2, 17, 6, 5),
(2, "male", 22, 7, "yes", 3, 18, 6, 2),
(1, "female", 32, 15, "yes", 3, 14, 1, 5)) val colArray1: Array[String] = Array("affairs", "gender", "age", "yearsmarried", "children", "religiousness", "education", "occupation", "rating") val data = dataList.toDF(colArray1:_*)
建立多层感知器分类器MLPC模型
data.createOrReplaceTempView("data") // 字符类型转换成数值
val labelWhere = "case when affairs=0 then 0 else cast(1 as double) end as label"
val genderWhere = "case when gender='female' then 0 else cast(1 as double) end as gender"
val childrenWhere = "case when children='no' then 0 else cast(1 as double) end as children" val dataLabelDF = spark.sql(s"select $labelWhere, $genderWhere,age,yearsmarried,$childrenWhere,religiousness,education,occupation,rating from data") val featuresArray = Array("gender", "age", "yearsmarried", "children", "religiousness", "education", "occupation", "rating") // 字段转换成特征向量
val assembler = new VectorAssembler().setInputCols(featuresArray).setOutputCol("features")
val vecDF: DataFrame = assembler.transform(dataLabelDF)
vecDF.show(10, truncate = false) // 分割数据
val splits = vecDF.randomSplit(Array(0.6, 0.4), seed = 1234L)
val trainDF = splits(0)
val testDF = splits(1) // 隐藏层结点数=2n+1,n为输入结点数
// 指定神经网络的图层:输入层8个节点(即8个特征);两个隐藏层,隐藏结点数分别为9和8;输出层2个结点(即二分类)
val layers = Array[Int](8, 9, 8, 2) // 建立多层感知器分类器MLPC模型
// 传统神经网络通常,层数<=5,隐藏层数<=3
// layers 指定神经网络的图层
// MaxIter 最大迭代次数
// stepSize 每次优化的迭代步长,仅适用于solver="gd"
// blockSize 用于在矩阵中堆叠输入数据的块大小以加速计算。 数据在分区内堆叠。 如果块大小大于分区中的剩余数据,则将其调整为该数据的大小。 建议大小介于10到1000之间。默认值:128
// initialWeights 模型的初始权重
// solver 算法优化。 支持的选项:“gd”(minibatch梯度下降)或“l-bfgs”。 默认值:“l-bfgs”
val trainer = new MultilayerPerceptronClassifier().setFeaturesCol("features").setLabelCol("label").setLayers(layers)
//.setMaxIter(100).setTol(1E-4).setSeed(1234L)
//.setBlockSize(128).setSolver("l-bfgs")
//.setInitialWeights(Vector).setStepSize(0.03) // 训练模型
val model = trainer.fit(trainDF)
// 测试
val result = model.transform(testDF)
val predictionLabels = result.select("prediction", "label") // 计算精度
val evaluator = new MulticlassClassificationEvaluator().setPredictionCol("prediction").setLabelCol("label").setMetricName("accuracy")
println("Accuracy: " + evaluator.evaluate(predictionLabels))
代码执行结果
vecDF.show(10, truncate = false)
+-----+------+----+------------+--------+-------------+---------+----------+------+------------------------------------+
|label|gender|age |yearsmarried|children|religiousness|education|occupation|rating|features |
+-----+------+----+------------+--------+-------------+---------+----------+------+------------------------------------+
|0.0 |1.0 |37.0|10.0 |0.0 |3.0 |18.0 |7.0 |4.0 |[1.0,37.0,10.0,0.0,3.0,18.0,7.0,4.0]|
|0.0 |0.0 |27.0|4.0 |0.0 |4.0 |14.0 |6.0 |4.0 |[0.0,27.0,4.0,0.0,4.0,14.0,6.0,4.0] |
|0.0 |0.0 |32.0|15.0 |1.0 |1.0 |12.0 |1.0 |4.0 |[0.0,32.0,15.0,1.0,1.0,12.0,1.0,4.0]|
|0.0 |1.0 |57.0|15.0 |1.0 |5.0 |18.0 |6.0 |5.0 |[1.0,57.0,15.0,1.0,5.0,18.0,6.0,5.0]|
|0.0 |1.0 |22.0|0.75 |0.0 |2.0 |17.0 |6.0 |3.0 |[1.0,22.0,0.75,0.0,2.0,17.0,6.0,3.0]|
|0.0 |0.0 |32.0|1.5 |0.0 |2.0 |17.0 |5.0 |5.0 |[0.0,32.0,1.5,0.0,2.0,17.0,5.0,5.0] |
|0.0 |0.0 |22.0|0.75 |0.0 |2.0 |12.0 |1.0 |3.0 |[0.0,22.0,0.75,0.0,2.0,12.0,1.0,3.0]|
|0.0 |1.0 |57.0|15.0 |1.0 |2.0 |14.0 |4.0 |4.0 |[1.0,57.0,15.0,1.0,2.0,14.0,4.0,4.0]|
|0.0 |0.0 |32.0|15.0 |1.0 |4.0 |16.0 |1.0 |2.0 |[0.0,32.0,15.0,1.0,4.0,16.0,1.0,2.0]|
|0.0 |1.0 |22.0|1.5 |0.0 |4.0 |14.0 |4.0 |5.0 |[1.0,22.0,1.5,0.0,4.0,14.0,4.0,5.0] |
+-----+------+----+------------+--------+-------------+---------+----------+------+------------------------------------+
only showing top 10 rows // 分割数据
val splits = vecDF.randomSplit(Array(0.6, 0.4), seed = 1234L)
splits: Array[org.apache.spark.sql.Dataset[org.apache.spark.sql.Row]] = Array([label: double, gender: double ... 8 more fields], [label: double, gender: double ... 8 more fields]) val trainDF = splits(0)
trainDF: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [label: double, gender: double ... 8 more fields] val testDF = splits(1)
testDF: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [label: double, gender: double ... 8 more fields] // 隐藏层结点数=2n+1,n为输入结点数
// 指定神经网络的图层:输入层8个节点(即8个特征);两个隐藏层,隐藏结点数分别为9和8;输出层2个结点(即二分类)
val layers = Array[Int](8, 9, 8, 2)
layers: Array[Int] = Array(8, 9, 8, 2) // 建立多层感知器分类器MLPC模型
// 传统神经网络通常,层数<=5,隐藏层数<=3
// layers 指定神经网络的图层
// MaxIter 最大迭代次数
// stepSize 每次优化的迭代步长,仅适用于solver="gd"
// blockSize 用于在矩阵中堆叠输入数据的块大小以加速计算。 数据在分区内堆叠。 如果块大小大于分区中的剩余数据,则将其调整为该数据的大小。 建议大小介于10到1000之间。默认值:128
// initialWeights 模型的初始权重
// solver 算法优化。 支持的选项:“gd”(minibatch梯度下降)或“l-bfgs”。 默认值:“l-bfgs”
val trainer = new MultilayerPerceptronClassifier().setFeaturesCol("features").setLabelCol("label").setLayers(layers)
//.setMaxIter(100).setTol(1E-4).setSeed(1234L)
//.setBlockSize(128).setSolver("l-bfgs")
//.setInitialWeights(Vector).setStepSize(0.03) // 训练模型
val model = trainer.fit(trainDF) // 测试
val result = model.transform(testDF)
result: org.apache.spark.sql.DataFrame = [label: double, gender: double ... 9 more fields] val predictionLabels = result.select("prediction", "label")
predictionLabels: org.apache.spark.sql.DataFrame = [prediction: double, label: double] // 计算精度
val evaluator = new MulticlassClassificationEvaluator().setPredictionCol("prediction").setLabelCol("label").setMetricName("accuracy") println("Accuracy: " + evaluator.evaluate(predictionLabels))
Accuracy: 0.7229437229437229 model.extractParamMap()
res7: org.apache.spark.ml.param.ParamMap =
{
mlpc_27ec9285cc65-featuresCol: features,
mlpc_27ec9285cc65-labelCol: label,
mlpc_27ec9285cc65-predictionCol: prediction
} model.layers
res8: Array[Int] = Array(8, 9, 8, 2) model.numFeatures
res9: Int = 8 model.weights
res10: org.apache.spark.ml.linalg.Vector = [0.6687947649918738,0.19748283690078897,-50.45651427272606,-45.341284166506405,-0.6919873953519974,-0.26471957984972305,0.23736474165465096,0.436660
4816264614,-0.710245071766165,-0.5988483140879621,-1.7544682663368922,15.823927446929437,-22.032609932367354,0.22889325554600204,-0.6427955112694319,-0.3723715157477082,0.7674184433539617,-0.3716890493835326,0.36611178436831204,-0.044164649859209495,-21.138120634483425,-41.97482820667807,0.8325520012775748,0.04477409210962596,-0.4552441455426475,0.0350190939749595,-0.06185632639036518,0.5480105570145155,0.44454066597818026,3.0222205130311064,-19.289596176945746,-0.3104490505088977,-0.77751632210236,-0.05028469739291188,-0.4138707133706901,0.6942105256488522,-0.00808567540478167,0.24805364902280116,2... result.show(20,false)
+-----+------+----+------------+--------+-------------+---------+----------+------+-------------------------------------+----------+
|label|gender|age |yearsmarried|children|religiousness|education|occupation|rating|features |prediction|
+-----+------+----+------------+--------+-------------+---------+----------+------+-------------------------------------+----------+
|0.0 |0.0 |22.0|0.125 |0.0 |2.0 |12.0 |5.0 |5.0 |[0.0,22.0,0.125,0.0,2.0,12.0,5.0,5.0]|0.0 |
|0.0 |0.0 |22.0|0.125 |0.0 |2.0 |14.0 |4.0 |5.0 |[0.0,22.0,0.125,0.0,2.0,14.0,4.0,5.0]|0.0 |
|0.0 |0.0 |22.0|0.125 |0.0 |2.0 |16.0 |6.0 |3.0 |[0.0,22.0,0.125,0.0,2.0,16.0,6.0,3.0]|0.0 |
|0.0 |0.0 |22.0|0.417 |0.0 |5.0 |14.0 |1.0 |4.0 |[0.0,22.0,0.417,0.0,5.0,14.0,1.0,4.0]|0.0 |
|0.0 |0.0 |22.0|0.417 |1.0 |3.0 |14.0 |3.0 |5.0 |[0.0,22.0,0.417,1.0,3.0,14.0,3.0,5.0]|0.0 |
|0.0 |0.0 |22.0|0.75 |0.0 |2.0 |16.0 |3.0 |4.0 |[0.0,22.0,0.75,0.0,2.0,16.0,3.0,4.0] |0.0 |
|0.0 |0.0 |22.0|0.75 |0.0 |3.0 |16.0 |1.0 |5.0 |[0.0,22.0,0.75,0.0,3.0,16.0,1.0,5.0] |0.0 |
|0.0 |0.0 |22.0|1.5 |0.0 |2.0 |16.0 |5.0 |5.0 |[0.0,22.0,1.5,0.0,2.0,16.0,5.0,5.0] |0.0 |
|0.0 |0.0 |22.0|1.5 |0.0 |2.0 |17.0 |5.0 |4.0 |[0.0,22.0,1.5,0.0,2.0,17.0,5.0,4.0] |0.0 |
|0.0 |0.0 |22.0|1.5 |0.0 |2.0 |18.0 |5.0 |5.0 |[0.0,22.0,1.5,0.0,2.0,18.0,5.0,5.0] |0.0 |
|0.0 |0.0 |22.0|1.5 |0.0 |3.0 |16.0 |5.0 |5.0 |[0.0,22.0,1.5,0.0,3.0,16.0,5.0,5.0] |0.0 |
|0.0 |0.0 |22.0|1.5 |0.0 |3.0 |16.0 |6.0 |5.0 |[0.0,22.0,1.5,0.0,3.0,16.0,6.0,5.0] |0.0 |
|0.0 |0.0 |22.0|1.5 |0.0 |4.0 |16.0 |5.0 |3.0 |[0.0,22.0,1.5,0.0,4.0,16.0,5.0,3.0] |0.0 |
|0.0 |0.0 |22.0|1.5 |1.0 |3.0 |12.0 |1.0 |3.0 |[0.0,22.0,1.5,1.0,3.0,12.0,1.0,3.0] |0.0 |
|0.0 |0.0 |22.0|1.5 |1.0 |4.0 |12.0 |1.0 |5.0 |[0.0,22.0,1.5,1.0,4.0,12.0,1.0,5.0] |0.0 |
|0.0 |0.0 |22.0|4.0 |1.0 |3.0 |9.0 |1.0 |4.0 |[0.0,22.0,4.0,1.0,3.0,9.0,1.0,4.0] |0.0 |
|0.0 |0.0 |22.0|4.0 |1.0 |3.0 |14.0 |1.0 |5.0 |[0.0,22.0,4.0,1.0,3.0,14.0,1.0,5.0] |0.0 |
|0.0 |0.0 |22.0|7.0 |1.0 |2.0 |14.0 |5.0 |2.0 |[0.0,22.0,7.0,1.0,2.0,14.0,5.0,2.0] |0.0 |
|0.0 |0.0 |27.0|1.5 |0.0 |2.0 |18.0 |6.0 |5.0 |[0.0,27.0,1.5,0.0,2.0,18.0,6.0,5.0] |0.0 |
|0.0 |0.0 |27.0|4.0 |0.0 |3.0 |17.0 |5.0 |5.0 |[0.0,27.0,4.0,0.0,3.0,17.0,5.0,5.0] |0.0 |
+-----+------+----+------------+--------+-------------+---------+----------+------+-------------------------------------+----------+
only showing top 20 rows
Spark Multilayer perceptron classifier (MLPC)多层感知器分类器的更多相关文章
- MLPclassifier,MLP 多层感知器的的缩写(Multi-layer Perceptron)
先看代码(sklearn的示例代码): from sklearn.neural_network import MLPClassifier X = [[0., 0.], [1., 1.]] y = [0 ...
- tensorflow学习笔记——自编码器及多层感知器
1,自编码器简介 传统机器学习任务很大程度上依赖于好的特征工程,比如对数值型,日期时间型,种类型等特征的提取.特征工程往往是非常耗时耗力的,在图像,语音和视频中提取到有效的特征就更难了,工程师必须在这 ...
- 4.2tensorflow多层感知器MLP识别手写数字最易懂实例代码
自己开发了一个股票智能分析软件,功能很强大,需要的点击下面的链接获取: https://www.cnblogs.com/bclshuai/p/11380657.html 1.1 多层感知器MLP(m ...
- TFboy养成记 多层感知器 MLP
内容总结与莫烦的视频. 这里多层感知器代码写的是一个简单的三层神经网络,输入层,隐藏层,输出层.代码的目的是你和一个二次曲线.同时,为了保证数据的自然,添加了mean为0,steddv为0.05的噪声 ...
- TensorFlow—多层感知器—MNIST手写数字识别
1 import tensorflow as tf import tensorflow.examples.tutorials.mnist.input_data as input_data import ...
- 【TensorFlow-windows】(三) 多层感知器进行手写数字识别(mnist)
主要内容: 1.基于多层感知器的mnist手写数字识别(代码注释) 2.该实现中的函数总结 平台: 1.windows 10 64位 2.Anaconda3-4.2.0-Windows-x86_64. ...
- RBF神经网络学习算法及与多层感知器的比较
对于RBF神经网络的原理已经在我的博文<机器学习之径向基神经网络(RBF NN)>中介绍过,这里不再重复.今天要介绍的是常用的RBF神经网络学习算法及RBF神经网络与多层感知器网络的对比. ...
- "多层感知器"--MLP神经网络算法
提到人工智能(Artificial Intelligence,AI),大家都不会陌生,在现今行业领起风潮,各行各业无不趋之若鹜,作为技术使用者,到底什么是AI,我们要有自己的理解. 目前,在人工智能中 ...
- 使用TensorFlow v2.0构建多层感知器
使用TensorFlow v2.0构建一个两层隐藏层完全连接的神经网络(多层感知器). 这个例子使用低级方法来更好地理解构建神经网络和训练过程背后的所有机制. 神经网络概述 MNIST 数据集概述 此 ...
随机推荐
- Map和String类型之间的转换
前提是String的格式是map或json类型的 public static void main(String[] args) { Map<String,Object> map = new ...
- Windows如何安装pip
下载这个文件: https://bootstrap.pypa.io/get-pip.py 然后到下载目录执行Python命令: (管理员权限执行) python get-pip.py
- lua去掉字符串中的UTF-8的BOM三个字节
废话不多说,还是先说点吧,项目中lua读取的text文件如果有BOM,客户端解析就会报错,所以我看了看,任务编辑器swGameTaskEditor 在写入文件的时候,也不知道为什么有的文件就是UTF- ...
- 奇怪吸引子---Qi
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- windows多线程同步--事件
推荐参考博客:秒杀多线程第六篇 经典线程同步 事件Event 事件是内核对象,多用于线程间通信,可以跨进程同步 事件主要用到三个函数:CreateEvent,OpenEvent,SetEvent, ...
- 原创:vsphere概念深入系列二:vSphere交换机命令行查看排错
1.如何查看VM的IP Addresses, MAC Addresses, Uplink ports, Port ID,VSS/VDS,portgroup,DVPort Group,vmnic Upl ...
- oracle decode()函数的参数原来可以为sql语句!
1.情景展示 判断某个字段的值,如果以APP开头,需查询APP表里对应的数据:如果是以JG开头,就查询机构对应的表. 2.原因分析 如果使用CASE WHEN THEN或者IF ELSIF 太麻烦 ...
- 【PMP】项目浮动的三种时间
自由浮动时间 不影响后续工作最早可以开始时间的前提下,这项工作可以拖延的时间叫做自由浮动时间. 总浮动时间 不影响项目总工期的情况下活动可以拖延的总时间. 项目浮动时间 在已经排好的总工期的基础上,领 ...
- 洛谷 P1016 旅行家的预算
P1016 旅行家的预算 题目OJ链接https://www.luogu.org/problemnew/show/P1016 题目描述一个旅行家想驾驶汽车以最少的费用从一个城市到另一个城市(假设出发时 ...
- 手机APP UI设计尺寸基础知识
从原理开始介绍一下移动端设计尺寸规范 初涉移动端设计和开发的同学们,基本都会在尺寸问题上纠结好一阵子才能摸到头绪.我也花了很长时间才弄明白,感觉有必要写一篇足够通俗易懂的教程来帮助大家.从原理说起,理 ...