P1562 还是N皇后
P1562 还是N皇后
原来,就会位运算搞八皇后,当复习一下。
可行的位置是1,其他是0
比如11011
到下一行的时候,对应的左斜线和右斜线要移一位
#include<iostream>
#include<cstdio>
#include<queue>
#include<algorithm>
#include<cmath>
#include<ctime>
#include<cstring>
#define inf 2147483647
#define For(i,a,b) for(register int i=a;i<=b;i++)
#define p(a) putchar(a)
#define g() getchar()
//by war
//2017.10.19
using namespace std;
int n;
char a[][];
int sum;
int tot;
int lim;
int t[];
void in(int &x)
{
int y=;
char c=g();x=;
while(c<''||c>'')
{
if(c=='-')
y=-;
c=g();
}
while(c<=''&&c>='')x=x*+c-'',c=g();
x*=y;
}
void o(int x)
{
if(x<)
{
p('-');
x=-x;
}
if(x>)o(x/);
p(x%+'');
} void test(int row,int left,int right,int c)
{
int pos,p=;
if(row!=lim)
{
pos=lim&~(row|left|right|t[c]);
while(pos!=)
{
p=pos&-pos;
pos=pos-p;
test(row+p,left+p<<,right+p>>,c+);
}
}
else
sum++;
} int main()
{
in(n);
lim=(<<n)-;
For(i,,n)
For(j,,n)
cin>>a[i][j];
For(i,,n)
for(int j=n;j>=;j--)
if(a[i][j]=='.')
t[i]+=(<<(n-j));
test(,,,);
o(sum);
return ;
}
P1562 还是N皇后的更多相关文章
- 题解 洛谷P1562 【还是N皇后】
原题:洛谷P1562 这个题的原理和8皇后的原理是一模一样的,就是必须要用n个皇后把每一个行填满,同时满足每一列,每一行,每一条对角线只有一个棋子.但如果按照原来的方法暴打的话只有60分(优化亲测无效 ...
- 递归实现n(经典的8皇后问题)皇后的问题
问题描述:八皇后问题是一个以国际象棋为背景的问题:如何能够在8×8的国际象棋棋盘上放置八个皇后, 使得任何一个皇后都无法直接吃掉其他的皇后?为了达到此目的,任两个皇后都不能处于同一条横行.纵行或斜线上 ...
- 八皇后算法的另一种实现(c#版本)
八皇后: 八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例.该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于 ...
- [LeetCode] N-Queens II N皇后问题之二
Follow up for N-Queens problem. Now, instead outputting board configurations, return the total numbe ...
- [LeetCode] N-Queens N皇后问题
The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens ...
- N皇后问题—初级回溯
N皇后问题,最基础的回溯问题之一,题意简单N*N的正方形格子上放置N个皇后,任意两个皇后不能出现在同一条直线或者斜线上,求不同N对应的解. 提要:N>13时,数量庞大,初级回溯只能保证在N< ...
- 数据结构0103汉诺塔&八皇后
主要是从汉诺塔及八皇后问题体会递归算法. 汉诺塔: #include <stdio.h> void move(int n, char x,char y, char z){ if(1==n) ...
- N皇后问题
题目描述 在n×n格的棋盘上放置彼此不受攻击的n个皇后.按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子.n后问题等价于再n×n的棋盘上放置n个后,任何2个皇后不妨在同一行或同 ...
- LeetCode:N-Queens I II(n皇后问题)
N-Queens The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no tw ...
随机推荐
- HTML中Meta标签中http-equiv属性
HTML中Meta标签中http-equiv的用法: <meta http-equiv="这里是参数" content="这里是参数值"> 1.Ex ...
- Mybatis入门学习笔记
1.定义别名 在sqlMapConfig.xml中,编写如下代码: <!-- 定义别名 --> <typeAliases> <!-- type: 需要映射的类型 alia ...
- char *与const char **函数参数传参问题
传参方法 ## 函数 extern void f2 ( const char ** ccc ); const char ch = 'X'; char * ch_ptr; const char ** c ...
- MFC_CFileDialog_选择单一文件
场景 选择单一文件 技术点 CFileDialog CFileDialog::CFileDialog( BOOL bOpenFileDialog, LPCTSTR lpszDefExt = NULL, ...
- YOLO(v1)
<You Only Look once:Unified,Real-Time Object Dectection> 以前的图像检测网络其实都是在分类网络的基础上进行修改,而YoLo是将检测问 ...
- Python 优雅获取本机 IP 方法【转】
转自:https://www.cnblogs.com/lfxiao/p/9672975.html 见过很多获取服务器本地IP的代码,个人觉得都不是很好,例如以下这些 不推荐:靠猜测去获取本地IP方法 ...
- Linux命令学习总结:date命令【转】
本文转自:http://www.cnblogs.com/kerrycode/p/3427617.html 命令简介: date 根据给定格式显示日期或设置系统日期时间.print or set the ...
- 深入解析内存原理:SRAM的基本原理
1. SRAM芯片的引脚定义早期的SRAM 芯片采用了20 线双列直插(DIP:Dual Inline Package)封装技术,它们之所以具有这么多的针脚,是因为它们必须:• 每个地址信号都需要一根 ...
- lnmp使用socket方式连接nginx优化php-fpm性能
lnmp使用socket方式连接nginx优化php-fpm性能 Nginx连接fastcgi的方式有2种:TCP和unix domain socket 什么是Unix domain socket?- ...
- Oracle数据库操作基本语法
创建表 SQL>create table classes( classId number(2), cname varchar2(40), birthda ...