函数文件1:real_fun.m

 function f=real_fun(x0,t0)
%精确解
f=4*x0*(1-x0)*sin(t0);

函数文件2:F.m

 function f=F(N,u,U,t,h1,h2)
%非线性方程组
%h1是x的步长,h2是t的步长
%u表示迭代节点,上一时刻的数值解
%h表示时间节点上的步长
%N表示空间节点的步数
a0=0.5*t^4*h2*N^2;
f(1,1)=a0*(U(2)^2-2*U(1)^2)+h2*fi(h1,t)+u(1)-U(1);
f(N-1,1)=a0*(-2*U(N-1)^2+U(N-2)^2)+h2*fi((N-1)*h1,t)+u(N-1)-U(N-1);
for p=2:N-2
f(p,1)=a0*(U(p+1)^2-2*U(p)^2+U(p-1)^2)+h2*fi(p*h1,t)+u(p)-U(p);
end

函数文件3:fi.m

 function f=fi(x0,t0)
%等式右边的f函数
f=4*x0*(1-x0)*cos(t0)-16*t0^4*(6*x0^2-6*x0+1)*(sin(t0))^2;

函数文件4:Jacobian.m

 function g=Jacobian(n,u,t,h1,h2)
%计算每个时间节点的牛顿迭代过程中的雅可比矩阵
%u表示迭代初值,上一时刻的数值解作为迭代初值
a=0.5*t^4*h2*n^2;
g=zeros(n-1);
g(1,2)=2*a*u(2);
g(1,1)=-4*a*u(1);
g(n-1,n-1)=-4*a*u(n-1);
g(n-1,n-2)=2*a*u(n-2);
for p=2:n-2
g(p,p+1)=2*a*u(p+1);
g(p,p)=-4*a*u(p);
g(p,p-1)=2*a*u(p-1);
end
g=g-eye(n-1);

函数文件5:Newtond.m

 function x=Newtond(n,u,t,h1,h2)
%使用修改后的牛顿迭代,可以不求雅可比de逆
%U中间代初值
%u起始迭代初值
U=u;
tol=0.5e-5;
% Jacobi=Jacobian(n,u,t,h1,h2);%每隔k步求一次雅可比
x1=U-Jacobian(n,u,t,h1,h2)\F(n,u,U,t,h1,h2);
while (norm(x1-U,1)>=tol)
%数值解的1范数是否在误差范围内
U=x1;
x1=U-Jacobian(n,u,t,h1,h2)\F(n,u,U,t,h1,h2);
end
x=x1;%不动点

脚本文件:

 tic;
clc
clear
N=100;
M=1000;
t_h=1/M;%t的步长
x_h=1/N;%x的步长
x=0:x_h:1;%x的节点
ti=0:t_h:0.5;%t的节点
%********************真解**************************
for i=1:length(x)
for j=1:length(ti)
real_Z(i,j)=real_fun(x(i),ti(j));
end
end
%********************真解**************************
%********************数值解**************************
ui=zeros(length(x)-2,1);%牛顿迭代初值
Z=zeros(length(x),length(ti));
for i=1:length(ti)-1
Z(2:length(x)-1,i+1)=Newtond(length(x)-1,ui,ti(i+1),x_h,t_h);%t(i+1)时间的牛顿数值解
ui=Z(2:length(x)-1,i+1);%牛顿迭代初值,上一时刻的数值解作为迭代初值
end %********************数值解**************************
[X,Y]=meshgrid(x,ti);
subplot(2,2,1),
mesh(X,Y,real_Z');
xlabel('x');ylabel('t');zlabel('u');title('analytical solution');
subplot(2,2,2),
mesh(X,Y,Z');
xlabel('x');ylabel('t');zlabel('u');title('numerical solution');
subplot(2,2,3),
mesh(X,Y,real_Z'-Z');
xlabel('x');ylabel('t');zlabel('u');title('error solution');
title('牛顿迭代法');
grid on;
toc;

效果图:

Matlab:非线性热传导(抛物方程)问题的更多相关文章

  1. Matlab:线性热传导(抛物线方程)问题

    函数文件1:real_fun.m function f=real_fun(x0,t0) f=(x0-x0^2)*exp(-t0); 函数文件2:fun.m function f=fun(x0,t0) ...

  2. MATLAB 符号变量表达式 + 方程求解

    源代码见文末 部分源代码: % 符号变量 两种表达方式 a=sym('a'); class(a); syms b; b; % 符号常量 c=sym('); c; % 符号表达式 三种表达方式 f1=' ...

  3. Matlab:非线性高阶常微分方程的几种解法

    一.隐式Euler: 函数文件1: function b=F(t,x0,u,h) b(,)=x0()-h*x0()-u(); b(,)=x0()+*h*x0()/t+*h*(*exp(x0())+ex ...

  4. hdu3483 A Very Simple Problem 非线性递推方程2 矩阵快速幂

    题目传送门 题目描述:给出n,x,mod.求s[n]. s[n]=s[n-1]+(x^n)*(n^x)%mod; 思路:这道题是hdu5950的进阶版.大家可以看这篇博客hdu5950题解. 由于n很 ...

  5. matlab 万能实用的非线性曲线拟合方法

    ——转载网络 在科学计算和工程应用中,经常会遇到需要拟合一系列的离散数据,最近找了很多相关的文章方法,在这里进行总结一下其中最完整.几乎能解决所有离散参数非线性拟合的方法 第一步:得到散点数据 根据你 ...

  6. PDE工具箱的简单使用

    转载自Here matlab的PDE工具箱的简单使用 问题选择 边界条件选择 菜单按钮和简单使用 命令行输入pdetool,打开GUI编辑界面如下: 注意到工具栏上,就是我们要用到的,从左到右依次使用 ...

  7. Python数据预处理—归一化,标准化,正则化

    关于数据预处理的几个概念 归一化 (Normalization): 属性缩放到一个指定的最大和最小值(通常是1-0)之间,这可以通过preprocessing.MinMaxScaler类实现. 常用的 ...

  8. Scipy-数值计算库

    Scipy在Numpy的基础上则加了众多的数学计算,科学计算以及工程计算中常用的模块,例如线性代数,常微分方程的数值求解,信号处理,图像处理,系数矩阵等.在本章中,将通过实例介绍Scipy中常用的的一 ...

  9. Python数据预处理(sklearn.preprocessing)—归一化(MinMaxScaler),标准化(StandardScaler),正则化(Normalizer, normalize)

      关于数据预处理的几个概念 归一化 (Normalization): 属性缩放到一个指定的最大和最小值(通常是1-0)之间,这可以通过preprocessing.MinMaxScaler类实现. 常 ...

随机推荐

  1. R t-test cor.test

    a = c(175, 168, 168, 190, 156, 181, 182, 175, 174, 179)b = c(185, 169, 173, 173, 188, 186, 175, 174, ...

  2. 【ASP.NET】 MVC下拉框联动

    这个case主要是我在做项目的时候遇到一个需要根据input控件输入的内容,动态填充dropdown list中的内容, 实现二者联动的需求.在搜索了一些资源后,这篇博客解决了我的问题,所以记录并转载 ...

  3. Docker Builders:Builder pattern vs. Multi-stage builds in Docker

    原文链接 Builder pattern vs. Multi-stage builds in Docker This post looks at two new PRs from the Docker ...

  4. Nuget EPPlus的使用

    EPPlus:网站 Supported Functions Excel Merge Operate public class ExcelMergeOperate { private static Lo ...

  5. [转载]linux下core文件设置与查看

    转自:https://blog.csdn.net/dingqinghui/article/details/77855330?locationNum=9&fps=1 linux下core文件设置 ...

  6. windows下远程连接Mysql

    使用“Ctrl + R”组合键快速打开cmd窗口,并输入“cmd”命令,打开cmd窗口. 使用“mysql -uroot -proot”命令可以连接到本地的mysql服务. 使用“use mysql” ...

  7. 【测试工程师面试】面试官热衷询问的N个问题

    1. 数据库中左连接右连接的区别 2.JAVA中continue和break的区别 3.Linux中查看某一个进程并且杀死 1.数据库中多表连接,根据不同的表的某一个字段进行关联, 左连接是将左边表全 ...

  8. 性能测试 Performance Test Report

    时间隔了很久,两年左右了吧,最近打开原来的测试报告,测试数据还是很漂亮的.TPS比我记忆中的要高很多. 数据中有些是定死了的(当时的要求),并发不是计算的,是用几个值跑起来试试看的.因为后期我们会用S ...

  9. svn的使用教程

    引言:这里只讲解几个svn不常用但是非常有用的使用方法,对于经常使用的不做概述,因为很简单,而且网上都能找到. 1.1 svn历史版本对比已经恢复到指定版本(myeclipse) 在项目中的文件或者文 ...

  10. zzulioj 1206 字符串的修改 (字符串修改)

    不难,理解一下直接过,代码如下: #include<stdio.h> #include<string.h> #include<math.h> #include< ...