Codecraft-18 and Codeforces Round #458 (Div. 1 + Div. 2, combined)G. Sum the Fibonacci
题意:给一个数组s,求\(f(s_a | s_b) * f(s_c) * f(s_d \oplus s_e)\),f是斐波那契数列,而且要满足\(s_a\&s_b==0\),\((s_a | s_b)\&s_c\&(s_d \oplus s_e)=2^{i}\)
题解:先求\(A_k=f(k)*\sum_{i|j==k\&\&i\&j==0}s_a*s_b\),明显是个子集卷积,在求出\(B_k=f(k)*s_k\),\(C_k=f(k)*\sum_{i \oplus j==k}s_i*s_j\),C明显是个xor卷积,fwt即可.
最后是\(D_l=\sum_{i\&j\&k==l}A_i*B_j*C_k\),D明显是个and卷积,还是fwt.答案就是\(\sum D(2^{i})\)
子集卷积可以枚举子集在\(O(3^{17})\)时间算出来.也可以通过fmt求出,dp[i][j]表示集合大小为i的j集合答案.对dp[i]单独fmt,时间复杂度\(O(17^{2}*2^{17})\)
//#pragma GCC optimize(2)
//#pragma GCC optimize(3)
//#pragma GCC optimize(4)
//#pragma GCC optimize("unroll-loops")
//#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#include<bits/stdc++.h>
#define fi first
#define se second
#define db double
#define mp make_pair
#define pb push_back
#define pi acos(-1.0)
#define ll long long
#define vi vector<int>
#define mod 1000000007
#define ld long double
//#define C 0.5772156649
//#define ls l,m,rt<<1
//#define rs m+1,r,rt<<1|1
#define pll pair<ll,ll>
#define pil pair<int,ll>
#define pli pair<ll,int>
#define pii pair<int,int>
#define ull unsigned long long
//#define base 1000000000000000000
#define fin freopen("a.txt","r",stdin)
#define fout freopen("a.txt","w",stdout)
#define fio ios::sync_with_stdio(false);cin.tie(0)
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline void sub(ll &a,ll b){a-=b;if(a<0)a+=mod;}
inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;}
template<typename T>inline T const& MAX(T const &a,T const &b){return a>b?a:b;}
template<typename T>inline T const& MIN(T const &a,T const &b){return a<b?a:b;}
inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;}
inline ll qp(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=ans*a%c;a=a*a%c,b>>=1;}return ans;}
using namespace std;
const ull ba=233;
const db eps=1e-5;
const ll INF=0x3f3f3f3f3f3f3f3f;
const int N=(1<<17)+10,maxn=1000000+10,inf=0x3f3f3f3f;
int a[N],b[N],c[N],d[20][N],dp[20][N],f[N];
int inv2=qp(2,mod-2);
void fwt_or(int *a,int n,int dft)
{
for(int i=1;i<n;i<<=1)
for(int j=0;j<n;j+=i<<1)
for(int k=j;k<j+i;k++)
{
if(dft==1)a[i+k]=(a[i+k]+a[k])%mod;
else a[i+k]=(a[i+k]-a[k]+mod)%mod;
}
}
void fwt_and(int *a,int n,int dft)
{
for(int i=1;i<n;i<<=1)
for(int j=0;j<n;j+=i<<1)
for(int k=j;k<j+i;k++)
{
if(dft==1)a[k]=(a[k]+a[i+k])%mod;
else a[k]=(a[k]-a[i+k]+mod)%mod;
}
}
void fwt_xor(int *a,int n,int dft)
{
for(int i=1;i<n;i<<=1)
for(int j=0;j<n;j+=i<<1)
for(int k=j;k<j+i;k++)
{
int x=a[k],y=a[i+k];
a[k]=(x+y)%mod;a[i+k]=(x-y+mod)%mod;
if(dft==-1)a[k]=1ll*a[k]*inv2%mod,a[i+k]=1ll*a[i+k]*inv2%mod;
}
}
int main()
{
f[0]=0,f[1]=1;
for(int i=2;i<N;i++)
{
f[i]=f[i-1]+f[i-2];
if(f[i]>=mod)f[i]-=mod;
}
int n;scanf("%d",&n);
for(int i=1;i<=n;i++)
{
int x;scanf("%d",&x);
a[x]++,c[x]++;
}
for(int i=0;i<(1<<17);i++)d[__builtin_popcount(i)][i]=a[i];
for(int i=0;i<=17;i++)fwt_or(d[i],(1<<17),1);
for(int i=0;i<=17;i++)for(int j=0;j<=i;j++)
for(int k=0;k<(1<<17);k++)
{
dp[i][k]+=1ll*d[j][k]*d[i-j][k]%mod;
if(dp[i][k]>=mod)dp[i][k]-=mod;
}
for(int i=0;i<=17;i++)fwt_or(dp[i],(1<<17),-1);
for(int i=0;i<(1<<17);i++)b[i]=dp[__builtin_popcount(i)][i];
fwt_xor(c,(1<<17),1);
for(int i=0;i<(1<<17);i++)c[i]=1ll*c[i]*c[i]%mod;
fwt_xor(c,(1<<17),-1);
for(int i=0;i<(1<<17);i++)
{
a[i]=1ll*a[i]*f[i]%mod;
b[i]=1ll*b[i]*f[i]%mod;
c[i]=1ll*c[i]*f[i]%mod;
}
fwt_and(a,(1<<17),1);fwt_and(b,(1<<17),1);fwt_and(c,(1<<17),1);
for(int i=0;i<(1<<17);i++)a[i]=1ll*a[i]*b[i]%mod*c[i]%mod;
fwt_and(a,(1<<17),-1);
int ans=0;
for(int i=0;i<17;i++)
{
ans+=a[1<<i];
if(ans>=mod)ans-=mod;
}
printf("%d\n",ans);
return 0;
}
/********************
********************/
Codecraft-18 and Codeforces Round #458 (Div. 1 + Div. 2, combined)G. Sum the Fibonacci的更多相关文章
- Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems(动态规划+矩阵快速幂)
Problem Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems Time Limit: 3000 mSec P ...
- Educational Codeforces Round 60 (Rated for Div. 2) - C. Magic Ship
Problem Educational Codeforces Round 60 (Rated for Div. 2) - C. Magic Ship Time Limit: 2000 mSec P ...
- Educational Codeforces Round 43 (Rated for Div. 2)
Educational Codeforces Round 43 (Rated for Div. 2) https://codeforces.com/contest/976 A #include< ...
- Educational Codeforces Round 35 (Rated for Div. 2)
Educational Codeforces Round 35 (Rated for Div. 2) https://codeforces.com/contest/911 A 模拟 #include& ...
- Codeforces Educational Codeforces Round 44 (Rated for Div. 2) F. Isomorphic Strings
Codeforces Educational Codeforces Round 44 (Rated for Div. 2) F. Isomorphic Strings 题目连接: http://cod ...
- Codeforces Educational Codeforces Round 44 (Rated for Div. 2) E. Pencils and Boxes
Codeforces Educational Codeforces Round 44 (Rated for Div. 2) E. Pencils and Boxes 题目连接: http://code ...
- Educational Codeforces Round 63 (Rated for Div. 2) 题解
Educational Codeforces Round 63 (Rated for Div. 2)题解 题目链接 A. Reverse a Substring 给出一个字符串,现在可以对这个字符串进 ...
- Educational Codeforces Round 39 (Rated for Div. 2) G
Educational Codeforces Round 39 (Rated for Div. 2) G 题意: 给一个序列\(a_i(1 <= a_i <= 10^{9}),2 < ...
- Educational Codeforces Round 48 (Rated for Div. 2) CD题解
Educational Codeforces Round 48 (Rated for Div. 2) C. Vasya And The Mushrooms 题目链接:https://codeforce ...
随机推荐
- IDEA旗舰版新建web项目
即在一个Project下(MyEclipse中为工作空间)新建一个Module. 点击,在弹出框上打一个勾,如下图: 点Next,输入项目名,如下图: 点Finish, 右键WEB-INF,新建2个D ...
- Kubernetes之容器
Images You create your Docker image and push it to a registry before referring to it in a Kubernetes ...
- python学习 day013打卡 内置函数
本节主要内容: 内置函数: 内置函数就是python给你提供的.拿来直接用的函数,比如print,input等等.截止到python版本3.6.2 python一共提供了68个内置函数.他们就是pyt ...
- 判断是否在同一个线程-GetCurrentThreadId()用法
线程 在一个程序中,这些独立运行的程序片断叫作"线程"(Thread),利用它编程的概念就叫作"多线程处理".利用线程,用户可按下一个按钮,然后程序会立即作出响 ...
- Linux——vi的使用
记录一下vi的一些使用指令,蓝色部分是比较常用的,其中使用过的重新进行了描述,极少部分是未使用过的,还有一些未使用也未记录进来,后续再来补充修正: 参考资料:http://cn.linux.vbird ...
- nginx启动报错:Job for nginx.service failed. See 'systemctl status nginx.service' and 'journalctl -xn' fo
一.背景 这个错误在重启nginx或者启动nginx的时候,经常会出现.我之前也一直认为出现这个错误是因为有程序占用了nginx的进程.但是知其然不知其所以然.每次报错都有点懵逼,所以这边一步步排查错 ...
- VC.【转】采用_beginthread/_beginthreadex函数创建多线程
https://blog.csdn.net/cbnotes/article/details/8331632 还可以看这个网址的内容:[多线程]VC6使用_beginthread开启多线程的方法-技术宅 ...
- Rancher与OpenLDAP对接
简要说明: Rancher官网文档中,关于访问控制,有与OpenLDAP对接的介绍,但只是简要一笔带过,Rancher与OpenLDAP对接页面中的几个参数如何填写,并没有详细的说明. 本文通过Ope ...
- PHP curl是什么
PHP curl是什么 一.总结 一句话总结:PHP支持的由Daniel Stenberg创建的libcurl库允许你与各种的服务器使用各种类型的协议进行连接和通讯. libcurl库 允许你与各种的 ...
- reactiveCocoa使用
@代理 简介:使用RACSubject信号替换 控制器2的操作: <1在头文件定义一个信号: @property (nonatomic, strong) RACSubject *delegate ...