POJ - 2823 Sliding Window (滑动窗口入门)
The array is [1 3 -1 -3 5 3 6 7], and k is 3.
Window position | Minimum value | Maximum value |
---|---|---|
[1 3 -1] -3 5 3 6 7 | -1 | 3 |
1 [3 -1 -3] 5 3 6 7 | -3 | 3 |
1 3 [-1 -3 5] 3 6 7 | -3 | 5 |
1 3 -1 [-3 5 3] 6 7 | -3 | 5 |
1 3 -1 -3 [5 3 6] 7 | 3 | 6 |
1 3 -1 -3 5 [3 6 7] | 3 | 7 |
Your task is to determine the maximum and minimum values in the sliding window at each position.
Input
Output
Sample Input
8 3
1 3 -1 -3 5 3 6 7
Sample Output
-1 -3 -3 -3 3 3
3 3 5 5 6 7 题意:给出n个数和区间长度m,然后求每个长度为m的区间的最大值和最小值
思路:因为题目所给的范围比较大,nlogn算法其实也可以,因为只有一组数据,但是我们把他作为滑动窗口的入门题来进行解析,滑动窗口是一个求一个区间的的值,区间长度固定的一个o(n)算法
下面首先我们熟悉下双端队列
头文件 #include<deque>
定义 deque<int> q;
头部插入 q.push_front()
头部删除 q.pop_front()
尾部插入 q.push_back()
尾部删除 q.pop_back()
取头值 q.front()
取尾值 q.back() 滑动窗口是一个维护一个队列,里面存的是最大值下表
最前的那个是当前区间最大值
给出一个例子
5 6 4 9 1
我们区间长度为2
开始5进入队列,然后因为6比5大,5就被踢出队列,6进来,因为队列最前面的就是区间里的最大值
然后4也到6得后面,因为如果6出去了,4就是当前得最大值了
后面9比4和6都大,就可以替换掉前面得数 主要思想:按顺序保存一个单调递减得序列,比他大得直接更新,小的后面区间用的到得一种思想,然后判断下标是否出区间就可以,每个数都最多进队列一次,出队列一次
然后这个提我们用两个双端队列 一个维护最大值,一个最小值即可
#include<cstdio>
#include<cstring>
#include<cmath>
#include<iostream>
#include<deque>
#include<vector>
#include<algorithm>
using namespace std;
int n,m;
int a[];
int b[];
int c[];
deque<int> qx,qn;
int cnt;
int main()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
while(!qx.empty()) qx.pop_front();
while(!qn.empty()) qn.pop_front();
for(int i=;i<n;i++)
scanf("%d",&a[i]);
for(int i=;i<n;i++)
{
while(!qx.empty()&&a[i]>=a[qx.back()])//判断是否新加得数比前面得大,大的话我们就要把最大值放最前,
qx.pop_back();
qx.push_back(i);
while(!qn.empty()&&a[i]<=a[qn.back()])
qn.pop_back();
qn.push_back(i);
if(i>=m-)
{
while(!qx.empty()&&qx.front()<=i-m) qx.pop_front();//我们把出了区间的数踢出队列
b[cnt]=a[qx.front()];
while(!qn.empty()&&qn.front()<=i-m) qn.pop_front();
c[cnt++]=a[qn.front()];
}
}
for(int i=;i<cnt;i++)
{
if(i==)
printf("%d",c[i]);
else printf(" %d",c[i]);
}
printf("\n");
for(int i=;i<cnt;i++)
{
if(i==)
printf("%d",b[i]);
else printf(" %d",b[i]);
}
printf("\n");
} }
POJ - 2823 Sliding Window (滑动窗口入门)的更多相关文章
- poj 2823 Sliding Window (单调队列入门)
/***************************************************************** 题目: Sliding Window(poj 2823) 链接: ...
- 洛谷P1886 滑动窗口(POJ.2823 Sliding Window)(区间最值)
To 洛谷.1886 滑动窗口 To POJ.2823 Sliding Window 题目描述 现在有一堆数字共N个数字(N<=10^6),以及一个大小为k的窗口.现在这个从左边开始向右滑动,每 ...
- POJ 2823 Sliding Window + 单调队列
一.概念介绍 1. 双端队列 双端队列是一种线性表,是一种特殊的队列,遵守先进先出的原则.双端队列支持以下4种操作: (1) 从队首删除 (2) 从队尾删除 (3) 从队尾插入 (4) ...
- POJ 2823 Sliding Window 题解
POJ 2823 Sliding Window 题解 Description An array of size n ≤ 106 is given to you. There is a sliding ...
- POJ 2823 Sliding Window & Luogu P1886 滑动窗口
Sliding Window Time Limit: 12000MS Memory Limit: 65536K Total Submissions: 66613 Accepted: 18914 ...
- POJ 2823 Sliding Window (滑动窗口的最值问题 )
Sliding Window Time Limit: 12000MS Memory Limit: 65536K Total Submissions: 41264 Accepted: 12229 ...
- 【POJ 2823】【Luogu P1886】Sliding Window 滑动窗口
POJ 2823 Luogu P1886 [解题思路] 这是一个单调队列算法的经典题目,几乎学习单调队列的人都接触过这题. 利用单调队列算法求出每一个固定区间内的最(大/小)值. 以下以最大值为例: ...
- POJ 2823 Sliding Window(单调队列入门题)
Sliding Window Time Limit: 12000MS Memory Limit: 65536K Total Submissions: 67218 Accepted: 190 ...
- 题解报告:poj 2823 Sliding Window(单调队列)
Description An array of size n ≤ 106 is given to you. There is a sliding window of size k which is m ...
随机推荐
- LeetCode--414--第三大的数
问题描述: 给定一个非空数组,返回此数组中第三大的数.如果不存在,则返回数组中最大的数.要求算法时间复杂度必须是O(n). 示例 1: 输入: [3, 2, 1] 输出: 1 解释: 第三大的数是 1 ...
- Linux中安装Mysql授权远程访问
一.直接授权 mysql> GRANT ALL PRIVILEGES ON *.* TO 'root'@'%' IDENTIFIED BY 'youpassword' WITH GRANT OP ...
- CF1117E Decypher the String
如果我们能询问一个排列的话,我们就可以得到这个置换,然后反向求解. 但现在字符集只有26. 考虑26^3>1e5. 用一个三维坐标去映射到一个一维整数,然后就可以构造排列了. #include& ...
- 23. Merge K Sorted Lists (Java, 归并排序的思路)
题目:Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexity ...
- 廖雪峰网站:学习python函数—函数参数(三)
1.*args # 位置参数,计算x2的函数 def power(x): return x * x p = power(5) print(p) # 把power(x)修改为power(x, n),用来 ...
- js中去掉字符串的空格、回车换行
//例如下面这个json串,中间的\n表示换行 var str = "{' retmsg':'success ',\n' trans_date':' 20170906'}"; co ...
- 整合多个网络的拓扑结构并降维(Mashup)
整合多个网络的拓扑结构并降维(Mashup) 介绍一个整合多个网络拓扑结构的方法,方法来源:Compact Integration of Multi-Network Topology for Func ...
- Version Control System
Version Control System(版本控制系统),是一种记录一个或若干文件内容变化,以便将来查阅特定版本修订情况的系统.版本控制系统不仅可以应用于软件源代码的文本文件,而且可以对任何类型 ...
- HTTP及RFC解析。
HTTP协议描述的是发送方与接收方的通信协议,通过两方的自觉遵守而存在,当然有不少的浏览器并没有百分百遵守这份协议.HTTP是运行于应用层的协议,基于TCP协议而运作.基本上是客户/服务器对答模式,其 ...
- ADO.NET json数组多条记录执行在DAL层循环(执行存储过程)
public int UpdateRegdate(tj_book_patient regdatejson) { int temp; SqlParameter[] ps = new SqlParamet ...