Hanlp等七种优秀的开源中文分词库推荐

中文分词是中文文本处理的基础步骤,也是中文人机自然语言交互的基础模块。由于中文句子中没有词的界限,因此在进行中文自然语言处理时,通常需要先进行分词。

纵观整个开源领域,陆陆续续做中文分词的也有不少,不过目前仍在维护的且质量较高的并不多。下面整理了一些个人认为比较优秀的中文分词库,以供大家参考使用。

1、HanLP —— 汉语言处理包

HanLP是一系列模型与算法组成的NLP工具包,由大快搜索主导并完全开源,目标是普及自然语言处理在生产环境中的应用。HanLP具备功能完善、性能高效、架构清晰、语料时新、可自定义的特点。

HanLP提供下列功能:

l 中文分词

l    HMM-Bigram(速度与精度最佳平衡;一百兆内存)

l        最短路分词、N-最短路分词

l    由字构词(侧重精度,可识别新词;适合NLP任务)

l        感知机分词、CRF分词

l    词典分词(侧重速度,每秒数千万字符;省内存)

l        极速词典分词

l    所有分词器都支持:

l        索引全切分模式

l        用户自定义词典

l        兼容繁体中文

l        训练用户自己的领域模型

l    词性标注

l        HMM词性标注(速度快)

l        感知机词性标注、CRF词性标注(精度高)

l    命名实体识别

l        基于HMM角色标注的命名实体识别 (速度快)

l            中国人名识别、音译人名识别、日本人名识别、地名识别、实体机构名识别

l        基于线性模型的命名实体识别(精度高)

l            感知机命名实体识别、CRF命名实体识别

l    关键词提取

l        TextRank关键词提取

l    自动摘要

l        TextRank自动摘要

l    短语提取

l        基于互信息和左右信息熵的短语提取

l    拼音转换

l        多音字、声母、韵母、声调

l    简繁转换

l        简繁分歧词(简体、繁体、臺灣正體、香港繁體)

l    文本推荐

l        语义推荐、拼音推荐、字词推荐

l    依存句法分析

l        基于神经网络的高性能依存句法分析器

l        MaxEnt依存句法分析

l    文本分类

l        情感分析

l    word2vec

l        词向量训练、加载、词语相似度计算、语义运算、查询、KMeans聚类

l        文档语义相似度计算

l    语料库工具

l        默认模型训练自小型语料库,鼓励用户自行训练。所有模块提供训练接口,语料可参考OpenCorpus

在提供丰富功能的同时,HanLP内部模块坚持低耦合、模型坚持惰性加载、服务坚持静态提供、词典坚持明文发布,使用非常方便,同时自带一些语料处理工具,帮助用户训练自己的模型。

2、jieba —— Python 中文分词组件

“结巴”中文分词,做最好的 Python 中文分词组件。

特性

l 支持三种分词模式:

l     精确模式,试图将句子最精确地切开,适合文本分析;

l     全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义;

l     搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。

l 支持繁体分词

l 支持自定义词典

算法

l 基于前缀词典实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图 (DAG)

l 采用了动态规划查找最大概率路径, 找出基于词频的最大切分组合

l 对于未登录词,采用了基于汉字成词能力的 HMM 模型,使用了 Viterbi 算法

代码示例

 

3、Jcseg —— 轻量级 Java 中文分词器

Jcseg 是基于 mmseg 算法的一个轻量级中文分词器,同时集成了关键字提取,关键短语提取,关键句子提取和文章自动摘要等功能,并且提供了一个基于 Jetty 的 web 服务器,方便各大语言直接 http 调用,同时提供了最新版本的 lucene, solr, elasticsearch 的分词接口!Jcseg 自带了一个 jcseg.properties 文件用于快速配置而得到适合不同场合的分词应用,例如:最大匹配词长,是否开启中文人名识别,是否追加拼音,是否追加同义词等!

核心功能:

l 中文分词:mmseg 算法 + Jcseg 独创的优化算法,四种切分模式。

l 关键字提取:基于 textRank 算法。

l 关键短语提取:基于 textRank 算法。

l 关键句子提取:基于 textRank 算法。

l 文章自动摘要:基于 BM25+textRank 算法。

l 自动词性标注:基于词库+(统计歧义去除计划),目前效果不是很理想,对词性标注结果要求较高的应用不建议使用。

l 命名实体标注:基于词库+(统计歧义去除计划),电子邮件,网址,大陆手机号码,地名,人名,货币,datetime 时间,长度,面积,距离单位等。

l Restful api:嵌入 jetty 提供了一个绝对高性能的 server 模块,包含全部功能的http接口,标准化 json 输出格式,方便各种语言客户端直接调用。

 

中文分词模式:

六种切分模式

(1).简易模式:FMM 算法,适合速度要求场合。

(2).复杂模式:MMSEG 四种过滤算法,具有较高的歧义去除,分词准确率达到了 98.41%。

(3).检测模式:只返回词库中已有的词条,很适合某些应用场合。

(4).检索模式:细粒度切分,专为检索而生,除了中文处理外(不具备中文的人名,数字识别等智能功能)其他与复杂模式一致(英文,组合词等)。

(5).分隔符模式:按照给定的字符切分词条,默认是空格,特定场合的应用。

(6).NLP 模式:继承自复杂模式,更改了数字,单位等词条的组合方式,增加电子邮件,大陆手机号码,网址,人名,地名,货币等以及无限种自定义实体的识别与返回。

4、sego —— Go 中文分词

sego 是一个 Go 中文分词库,词典用双数组 trie(Double-Array Trie)实现, 分词器算法为基于词频的最短路径加动态规划。

支持普通和搜索引擎两种分词模式,支持用户词典、词性标注,可运行 JSON RPC 服务

分词速度单线程 9MB/s,goroutines 并发 42MB/s(8核 Macbook Pro)。

示例代码:

 

5、 FoolNLTK —— 可能是最准的开源中文分词

中文处理工具包

特点

l 可能不是最快的开源中文分词,但很可能是最准的开源中文分词

l 基于 BiLSTM 模型训练而成

l 包含分词,词性标注,实体识别, 都有比较高的准确率

l 用户自定义词典

l 可训练自己的模型

l 批量处理

定制自己的模型

 

6、Ansj 中文分词 —— 基于 n-Gram+CRF+HMM 的中文分词的 Java 实现

Ansj 中文分词是一个基于 n-Gram+CRF+HMM 的中文分词的 java 实现。分词速度达到每秒钟大约200万字左右(mac air下测试),准确率能达到96%以上。目前实现了中文分词、中文姓名识别、用户自定义词典、关键字提取、自动摘要、关键字标记等功能,可以应用到自然语言处理等方面,适用于对分词效果要求高的各种项目。

下面是一个简单的分词效果,仅做参考:

 

7、word 分词 —— Java 分布式中文分词组件

word 分词是一个 Java 实现的分布式的中文分词组件,提供了多种基于词典的分词算法,并利用 ngram 模型来消除歧义。能准确识别英文、数字,以及日期、时间等数量词,能识别人名、地名、组织机构名等未登录词。能通过自定义配置文件来改变组件行为,能自定义用户词库、自动检测词库变化、支持大规模分布式环境,能灵活指定多种分词算法,能使用refine功能灵活控制分词结果,还能使用词频统计、词性标注、同义标注、反义标注、拼音标注等功能。提供了10种分词算法,还提供了10种文本相似度算法,同时还无缝和 Lucene、Solr、ElasticSearch、Luke 集成。注意:word1.3 需要 JDK1.8 。

分词算法效果评估:

 

 

转载自编辑部的故事的个人空间

Hanlp等七种优秀的开源中文分词库推荐的更多相关文章

  1. 开源中文分词工具探析(七):LTP

    LTP是哈工大开源的一套中文语言处理系统,涵盖了基本功能:分词.词性标注.命名实体识别.依存句法分析.语义角色标注.语义依存分析等. [开源中文分词工具探析]系列: 开源中文分词工具探析(一):ICT ...

  2. GitHub 优秀Android 开源项目

    阅读目录 1.Xabber客户端 2.oschina客户端 3.手机安全管家 4.星座连萌 5.玲闹铃 6.魔乐盒 7.PWP日历 8.Apollo音乐播放器 9.夏普名片识别 10.高仿人人网 11 ...

  3. 11大Java开源中文分词器的使用方法和分词效果对比,当前几个主要的Lucene中文分词器的比较

    本文的目标有两个: 1.学会使用11大Java开源中文分词器 2.对比分析11大Java开源中文分词器的分词效果 本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那 ...

  4. 11大Java开源中文分词器的使用方法和分词效果对比

    本文的目标有两个: 1.学会使用11大Java开源中文分词器 2.对比分析11大Java开源中文分词器的分词效果 本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那 ...

  5. JeeSite是基于多个优秀的开源项目,高度整合封装而成的高效,高性能,强安全性的 开源 Java EE快速开发平台

    JeeSite本身是以Spring Framework为核心容器,Spring MVC为模型视图控制器,MyBatis为数据访问层, Apache Shiro为权限授权层,Ehcahe对常用数据进行缓 ...

  6. Linux就这个范儿 第15章 七种武器 linux 同步IO: sync、fsync与fdatasync Linux中的内存大页面huge page/large page David Cutler Linux读写内存数据的三种方式

    Linux就这个范儿 第15章 七种武器  linux 同步IO: sync.fsync与fdatasync   Linux中的内存大页面huge page/large page  David Cut ...

  7. 开源中文分词工具探析(四):THULAC

    THULAC是一款相当不错的中文分词工具,准确率高.分词速度蛮快的:并且在工程上做了很多优化,比如:用DAT存储训练特征(压缩训练模型),加入了标点符号的特征(提高分词准确率)等. 1. 前言 THU ...

  8. 开源中文分词工具探析(五):FNLP

    FNLP是由Fudan NLP实验室的邱锡鹏老师开源的一套Java写就的中文NLP工具包,提供诸如分词.词性标注.文本分类.依存句法分析等功能. [开源中文分词工具探析]系列: 中文分词工具探析(一) ...

  9. 开源中文分词工具探析(五):Stanford CoreNLP

    CoreNLP是由斯坦福大学开源的一套Java NLP工具,提供诸如:词性标注(part-of-speech (POS) tagger).命名实体识别(named entity recognizer ...

随机推荐

  1. 匿名函数lambda,过滤函数filter,映射类型map

    匿名函数lambda, 作用是不用定义函数,用完之后会自动被删掉,在使用执行脚本的时候,使用lambda就可以省下定义函数的过程,简化代码的可读性. 格式是 例子g=lambda x,y:x+y g( ...

  2. c++ 继承(二)

    不能自动继承的成员函数 1.构造函数 2.析构函数 3.=运算符 继承与构造函数 1.基类的构造函数不被继承,派生类中需要声明自己的构造函数 2.声明构造函数时,只需要对本类中新增成员进行初始化,对继 ...

  3. Spring Boot 揭秘与实战(二) 数据缓存篇 - EhCache

    文章目录 1. EhCache 集成 2. 源代码 本文,讲解 Spring Boot 如何集成 EhCache,实现缓存. 在阅读「Spring Boot 揭秘与实战(二) 数据缓存篇 - 快速入门 ...

  4. 推荐系统-05-Spark电影推荐、评估与部署

    一.新建scala项目 二.构造程序 代码如下 package xyz.pl8 import java.io.File import org.apache.log4j.{Level, Logger} ...

  5. 【leetcode】13-Roman2Integer

    problem Roman to Integer 每个Roman表示一个数字,可以进行一一映射: 左边字符表示的数字小于右边字符时,减去对应的数字,否则加上: 注意左右字符比较时,最后一个字符不能比较 ...

  6. XXS level2

    (1)用level1的方法尝试,发现行不通 (2)查看PHP源代码 <?php ini_set("display_errors", 0); $str = $_GET[&quo ...

  7. java-接口的成员特点

    1.成员变量: - 只能是常量,并且是静态的.公共的. - 默认修饰符:public static final - 建议:自己手动给出. 2.构造方法:接口没有构造方法. 3.成员方法: - 只能是抽 ...

  8. acm 2005

    ////////////////////////////////////////////////////////////////////////////////#include<iostream ...

  9. hdu4407 Sum 容斥原理

    XXX is puzzled with the question below: 1, 2, 3, ..., n (1<=n<=400000) are placed in a line. T ...

  10. easyui表单校验

    痛苦使人清醒,痛苦使人警惕.生于忧患,死于安乐.付出总会有回报. 1.下面跟大家分享使用easyui时表单中的值如何校验. 1.1 首先,在你的jsp/html页面引入JQuery和easyui的js ...