在spark中,我们知道一切的操作都是基于RDD的。在使用中,RDD有一种非常特殊也是非常实用的format——pair RDD,即RDD的每一行是(key, value)的格式。这种格式很像Python的字典类型,便于针对key进行一些处理。

针对pair RDD这样的特殊形式,spark中定义了许多方便的操作,今天主要介绍一下reduceByKey和groupByKey,因为在接下来讲解《在spark中如何实现SQL中的group_concat功能?》时会用到这两个operations。

首先,看一看spark官网是怎么解释的:

reduceByKey(func, numPartitions=None)

  Merge the values for each key using an associative reduce function. This will also perform the merginglocally on each mapper before sending results to a reducer, similarly to a “combiner” in MapReduce. Output will be hash-partitioned with numPartitions partitions, or the default parallelism level if numPartitions is not specified.

  也就是,reduceByKey用于对每个key对应的多个value进行merge操作,最重要的是它能够在本地先进行merge操作,并且merge操作可以通过函数自定义。

groupByKey(numPartitions=None)

  Group the values for each key in the RDD into a single sequence. Hash-partitions the resulting RDD with numPartitions partitions. Note: If you are grouping in order to perform an aggregation (such as a sum or average) over each key, using reduceByKey or aggregateByKey will provide much better performance.

  也就是,groupByKey也是对每个key进行操作,但只生成一个sequence。需要特别注意“Note”中的话,它告诉我们:如果需要对sequence进行aggregation操作(注意,groupByKey本身不能自定义操作函数),那么,选择reduceByKey/aggregateByKey更好。这是因为groupByKey不能自定义函数,我们需要先用groupByKey生成RDD,然后才能对此RDD通过map进行自定义函数操作。

为了更好的理解上面这段话,下面我们使用两种不同的方式去计算单词的个数[2]:

  1. val words = Array("one", "two", "two", "three", "three", "three")
  2. val wordPairsRDD = sc.parallelize(words).map(word => (word, 1))
  3. val wordCountsWithReduce = wordPairsRDD.reduceByKey(_ + _)
  4. val wordCountsWithGroup = wordPairsRDD.groupByKey().map(t => (t._1, t._2.sum))

上面得到的wordCountsWithReduce和wordCountsWithGroup是完全一样的,但是,它们的内部运算过程是不同的。

(1)当采用reduceByKeyt时,Spark可以在每个分区移动数据之前将待输出数据与一个共用的key结合。借助下图可以理解在reduceByKey里究竟发生了什么。 注意在数据对被搬移前同一机器上同样的key是怎样被组合的(reduceByKey中的lamdba函数)。然后lamdba函数在每个区上被再次调用来将所有值reduce成一个最终结果。整个过程如下:

(2)当采用groupByKey时,由于它不接收函数,spark只能先将所有的键值对(key-value pair)都移动,这样的后果是集群节点之间的开销很大,导致传输延时。整个过程如下:

因此,在对大数据进行复杂计算时,reduceByKey优于groupByKey。

另外,如果仅仅是group处理,那么以下函数应该优先于 groupByKey :
  (1)、combineByKey 组合数据,但是组合之后的数据类型与输入时值的类型不一样。
  (2)、foldByKey合并每一个 key 的所有值,在级联函数和“零值”中使用。

最后,对reduceByKey中的func做一些介绍:

  如果是用Python写的spark,那么有一个库非常实用:operator[3],其中可以用的函数包括:大小比较函数,逻辑操作函数,数学运算函数,序列操作函数等等。这些函数可以直接通过“from operator import *”进行调用,直接把函数名作为参数传递给reduceByKey即可。如下:

 from operator import add
rdd = sc.parallelize([("a", ), ("b", ), ("a", )])
sorted(rdd.reduceByKey(add).collect())
[('a', ), ('b', )]</span>

转载:https://blog.csdn.net/zongzhiyuan/article/details/49965021

reduceByKey和groupByKey区别与用法的更多相关文章

  1. 转载-reduceByKey和groupByKey的区别

    原文链接-https://www.cnblogs.com/0xcafedaddy/p/7625358.html 先来看一下在PairRDDFunctions.scala文件中reduceByKey和g ...

  2. reduceByKey和groupByKey的区别

    先来看一下在PairRDDFunctions.scala文件中reduceByKey和groupByKey的源码 /** * Merge the values for each key using a ...

  3. spark:reducebykey与groupbykey的区别

    从源码看: reduceBykey与groupbykey: 都调用函数combineByKeyWithClassTag[V]((v: V) => v, func, func, partition ...

  4. 【Spark算子】:reduceByKey、groupByKey和combineByKey

    在spark中,reduceByKey.groupByKey和combineByKey这三种算子用的较多,结合使用过程中的体会简单总结: 我的代码实践:https://github.com/wwcom ...

  5. Position属性四个值:static、fixed、absolute和relative的区别和用法

    Position属性四个值:static.fixed.absolute和relative的区别和用法 在用CSS+DIV进行布局的时候,一直对position的四个属性值relative,absolu ...

  6. Python中内置数据类型list,tuple,dict,set的区别和用法

    Python中内置数据类型list,tuple,dict,set的区别和用法 Python语言简洁明了,可以用较少的代码实现同样的功能.这其中Python的四个内置数据类型功不可没,他们即是list, ...

  7. angularjs中provider,factory,service的区别和用法

    angularjs中provider,factory,service的区别和用法 都能提供service,但是又有差别 service 第一次被注入时实例化,只实例化一次,整个应用的生命周期中是个单例 ...

  8. [转]div与span区别及用法

    DIV与SPAN区别及div与san用法篇 接下来了解在div+css开发的时候在html网页制作,特别是标签运用中div和span的区别及用法.新手在使用web标准(div css)开发网页的时候, ...

  9. GROUP BY,WHERE,HAVING之间的区别和用法

      GROUP BY,WHERE,HAVING之间的区别和用法 分类: Oracle学习2009-11-01 23:40 21963人阅读 评论(6) 收藏 举报 mathmanagersql数据库m ...

随机推荐

  1. 20165326 java第三周学习笔记

    纸质学习笔记 代码托管

  2. Linux:http配置

    http配置 1.挂载系统:mount /dev/cdrom /mnt/cdrom2.安装:rpm -ivh httpd-2.4.6-88.el7.centos.x86_64.rpm2.启动服务:sy ...

  3. 框架:MVC

    MVC 一.介绍 MVC是模型-视图-控制器的缩写,一种软件思想,强制性的把应用程序的输入.处理和输出分开.可以和任何的重定向能解耦. 三部分的任务说明: 视图:获取数据,显示数据 模型:处理数据 控 ...

  4. 解决java.lang.NoClassDefFoundError: org/aopalliance/intercept/MethodInterceptor问题

    hibernate整合spring当在spring配置文件中加入如下代码 <!--2.配置事务属性,需要事务管理器--> <tx:advice id="txAdvice&q ...

  5. js 回车键事件

    document.onkeydown = function (event) { var e = event || window.event || arguments.callee.caller.arg ...

  6. 008-React-Native-Android-打包,修改名称图标(转载)

    一: 前言 React-native是目前最火的一种APP混合开发语言.本文旨在帮助一些不熟悉安卓原生开发的程序员快速熟悉安卓目录结构.使用工具:js--VS Code; 二: 目录结构 --1:新建 ...

  7. 2.20 绕过验证码(add_cookie)

    2.20 绕过验证码(add_cookie) 前言验证码这种问题是比较头疼的,对于验证码的处理,不要去想破解方法,这个验证码本来就是为了防止别人自动化登录的.如果你能破解,说明你们公司的验证码吗安全级 ...

  8. 机器学习:Kullback-Leibler Divergence (KL 散度)

    今天,我们介绍机器学习里非常常用的一个概念,KL 散度,这是一个用来衡量两个概率分布的相似性的一个度量指标.我们知道,现实世界里的任何观察都可以看成表示成信息和数据,一般来说,我们无法获取数据的总体, ...

  9. Quorum算法

    分布式系统中,一般保存多个数据副本,明显可以提高系统可靠性.并且存储这些数据副本的节点,不仅做容灾用,也可以提供服务,作负载均衡. 这里就涉及到一个数据一致性的问题,也就是各副本间要进行同步,来保持最 ...

  10. OpenVPN多用户配置

    /********************************************************************************* * OpenVPN多用户配置 * ...