Leading dimension
Leading dimension
http://icl.cs.utk.edu/lapack-forum/viewtopic.php?p=661&sid=67c66465dedfcbb6e0612cca7647698f
Suppose that you have a matrix A of size 100x100 which is stored in an array 100x100. In this case LDA is the same as N. Now suppose that you want to work only on the submatrix A(91:100 , 1:100); in this case the number of rows is 10 but LDA=100. Assuming the
fortran column-major ordering (which is the case in LAPACK), the LDA is used to define the distance in memory between elements of two consecutive columns which have the same row index. If you call B = A(91:100 , 1:100) then B(1,1) and B(1,2) are 100 memory
locations far from each other.
其实之所以设LDA(leading dimension)这个参数主要是考虑到fortran是“列优先”存储数组的原因。这里要解本征值的矩阵是NxN大小的,但是存储这个矩阵的数组A却并不一定非得是NxN大小,可以是M1xM2大小,其中 M1≥N,M2≥N,NxN矩阵要存放在M1xM2数组的左上角,即A(1:N,1:N)部分。这样,当把数组A传给zheev时,zheev通过N来知道要解的矩阵是多大的,通过LDA来知道同一行中相邻两列的元素在内存中相距多远,可见,LDA=M2,其实就是数组A的一列的元素个数,也就是“实际存储时的第一维”的大小。正是由于fortran列优先存储数组,才使得概念上的第一维(行)与实际存储时的第一维(列)不一样。
注1:如果参数A的位置就用数组片段来调用的话则令当别论。例如同样A的大小为M1xM2,那么若调用zheev时,A参数位置处的实参是A(1:N,1:N)的话,则LDA位置处的实参应该是N,而不是M2!
注2:zheev的输出本征矢时,A的每一列代表一个本征矢。
Leading dimension的更多相关文章
- theano学习
import numpy import theano.tensor as T from theano import function x = T.dscalar('x') y = T.dscalar( ...
- (原)使用mkl计算特征值和特征向量
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/5585271.html 参考文档:mkl官方文档 lapack_int LAPACKE_sgeev(in ...
- (原)使用mkl中函数LAPACKE_sgesv计算矩阵的逆矩阵
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/5578027.html 参考文档:mkl的说明文档 lapack_int LAPACKE_sgesv(i ...
- 有关CUBLAS中的矩阵乘法函数
关于cuBLAS库中矩阵乘法相关的函数及其输入输出进行详细讨论. ▶ 涨姿势: ● cuBLAS中能用于运算矩阵乘法的函数有4个,分别是 cublasSgemm(单精度实数).cublasDgemm( ...
- theano使用
一 theano内置数据类型 只有thenao.shared()类型才有get_value()成员函数(返回numpy.ndarray)? 1. 惯常处理 x = T.matrix('x') # t ...
- CUDA ---- CUDA库简介
CUDA Libraries简介 上图是CUDA 库的位置,本文简要介绍cuSPARSE.cuBLAS.cuFFT和cuRAND,之后会介绍OpenACC. cuSPARSE线性代数库,主要针对稀疏矩 ...
- 卷积神经网络LeNet Convolutional Neural Networks (LeNet)
Note This section assumes the reader has already read through Classifying MNIST digits using Logisti ...
- CUBLAS基础实验
一.概述 最近在试图进行cuda并行编程,目标是编写一段矩阵计算代码,将计算结果存储进入GPU的缓冲区当中,并在达到某些要求后强制刷新缓冲区,取得计算结果. 但是考虑时间紧任务重的状况和实际的性能要求 ...
- professional cuda c programming--CUDA库简单介绍
CUDA Libraries简单介绍 上图是CUDA 库的位置.本文简要介绍cuSPARSE.cuBLAS.cuFFT和cuRAND.之后会介绍OpenACC. cuSPARSE线性代数库,主要针 ...
随机推荐
- 哪款C语言编译器(IDE)适合初学者?
这里我们把“编译器”和“IDE(集成开发环境)”当做一个概念,不再加以区分. C语言的集成开发环境有很多种,尤其是 Windows 下,多如牛毛,初学者往往不知道该如何选择,本节我们就针对 Windo ...
- Bugku - 好多压缩包 - Writeup
bugku - 好多压缩包 - Writeup M4x原创,转载请注明出处 这道题前前后后做了好几天,这里记录一下 题目 文件下载 分析 解压下载后的文件,发现有68个压缩文件,并且每个压缩文件里都有 ...
- python numpy中sum()时出现负值
import numpy a=numpy.random.randint(1, 4095, (5000,5000)) a.sum() 结果为负值, 这是错误的,a.sum()的类型为 int32,如何做 ...
- 情人节用Python智能聊天机器人的实现|制作一个虚拟恋人
首先项目需要的包 import urllib.request import urllib.parse from tkinter import * import time PS:另外很多人在学习Pyth ...
- opencv:联通组件扫描
#include <opencv2/opencv.hpp> #include <iostream> using namespace cv; using namespace st ...
- Bugku-CTF之sql注入2 (全都tm过滤了绝望吗?)
Day 38 sql注入2 200 http://123.206.87.240:8007/web2/ 全都tm过滤了绝望吗? 提示 !,!=,=,+,-,^,%
- 路飞-自定义User表和Media配置
user模块User表 创建user模块 """ 前提:在 luffy 虚拟环境下 1.终端从项目根目录进入apps目录 >: cd luffyapi & ...
- 4.万能的Map+模糊查询
万能的Map 当数据或者属性很多的时候,可以选择性的单独改变密码或者用户名等等 UserMapper.java int updateUserByMap(Map<String,Object> ...
- mybatis--多对一关联
(1)首先,创建数据库mybatismanytoone并插入数据 create database mybatismanytoone; use mybatismanytoone; create tabl ...
- Android学习15
Date&Time DatePicker(日期选择器),TimePicker(时间选择器),CalendarView(日期视图): 1.TextClock TextClock可以以字符串格式显 ...