从Excel到Python:最常用的36个Pandas函数
关于Excel,你一定用的到的36个Python函数

本文涉及pandas最常用的36个函数,通过这些函数介绍如何完成数据生成和导入、数据清洗、预处理,以及最常见的数据分类,数据筛选,分类汇总,透视等最常见的操作。

生成数据表

常见的生成数据表的方法有两种,第一种是导入外部数据,第二种是直接写入数据。

Excel中的“文件”菜单中提供了获取外部数据的功能,支持数据库和文本文件和页面的多种数据源导入。

Python支持从多种类型的数据导入。在开始使用Python进行数据导入前需要先导入numpy和pandas库

import numpy as np
import pandas as pd

导入外部数据

df=pd.DataFrame(pd.read_csv('name.csv',header=1))
df=pd.DataFrame(pd.read_Excel('name.xlsx'))c

里面有很多可选参数设置,例如列名称、索引列、数据格式等

直接写入数据

df = pd.DataFrame({"id":[1001,1002,1003,1004,1005,1006],
"date":pd.date_range('20130102', periods=6),
"city":['Beijing ', 'SH', ' guangzhou ', 'Shen
zhen', 'shanghai', 'BEIJING '],
"age":[23,44,54,32,34,32],
"category":['100-A','100-B','110-A','110-C','2
10-A','130-F'],
"price":[1200,np.nan,2133,5433,np.nan,4432]},
columns =['id','date','city','category','age',
'price'])

数据表检查

数据表检查的目的是了解数据表的整体情况,获得数据表的关键信息、数据的概况,例如整个数据表的大小、所占空间、数据格式、是否有 空值和重复项和具体的数据内容,为后面的清洗和预处理做好准备。

1.数据维度(行列)

Excel中可以通过CTRL+向下的光标键,和CTRL+向右的光标键 来查看行号和列号。Python中使用shape函数来查看数据表的维度,也就是行数和列数。

df.shape

2.数据表信息

使用info函数查看数据表的整体信息,包括数据维度、列名称、数据格式和所占空间等信息。#数据表信息

df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6 entries, 0 to 5
Data columns (total 6 columns):
id 6 non-null int64
date 6 non-null datetime64[ns]
city 6 non-null object
category 6 non-null object
age 6 non-null int64
price 4 non-null float64
dtypes: datetime64[ns](1), float64(1), int64(2), object(2)
memory usage: 368.0+ bytes

3.查看数据格式

Excel中通过选中单元格并查看开始菜单中的数值类型来判断数 据的格式。Python中使用dtypes函数来返回数据格式。

Dtypes是一个查看数据格式的函数,可以一次性查看数据表中所 有数据的格式,也可以指定一列来单独查看

#查看数据表各列格式
df.dtypes
id int64
date datetime64[ns]
city object
category object
age int64
price float64
dtype: object
#查看单列格式
df['B'].dtype
dtype('int64')

4.查看空值

Excel中查看空值的方法是使用“定位条件”在“开始”目录下的“查找和选择”目录.

Isnull是Python中检验空值的函数

#检查数据空值
df.isnull()
#检查特定列空值
df['price'].isnull()

5.查看唯一值

Excel中查看唯一值的方法是使用“条件格式”对唯一值进行颜色 标记。

Python中使用unique函数查看唯一值。

#查看city列中的唯一值
df['city'].unique()
array(['Beijing ', 'SH', ' guangzhou ', 'Shenzhen', 'shanghai', '
BEIJING '], dtype=object)

6.查看数据表数值

Python中的Values函数用来查看数据表中的数值

#查看数据表的值
df.values

7.查看列名称

Colums函数用来单独查看数据表中的列名称。

#查看列名称
df.columns
Index(['id', 'date', 'city', 'category', 'age', 'price'], dtype='
object')

8.查看前10行数据

Head函数用来查看数据表中的前N行数据

#查看前3行数据
df.head(3)

9.查看后10行数据

Tail行数与head函数相反,用来查看数据表中后N行的数据

#查看最后3行
df.tail(3)

数据表清洗

本章介绍对数据表中的问题进行清洗,包括对空值、大小写问题、数据格式和重复值的处理。

1.处理空值(删除或填充)

Excel中可以通过“查找和替换”功能对空值进行处理

Python中处理空值的方法比较灵活,可以使用 Dropna函数用来删除数据表中包含空值的数据,也可以使用fillna函数对空值进行填充。

#删除数据表中含有空值的行
df.dropna(how='any')

也可以使用数字对空值进行填充

#使用数字0填充数据表中空值
df.fillna(value=0)

使用price列的均值来填充NA字段,同样使用fillna函数,在要填充的数值中使用mean函数先计算price列当前的均值,然后使用这个均值对NA进行填充。

#使用price均值对NA进行填充
df['price'].fillna(df['price'].mean())
Out[8]:
0 1200.0
1 3299.5
2 2133.0
3 5433.0
4 3299.5
5 4432.0
Name: price, dtype: float64

2.清理空格

字符中的空格也是数据清洗中一个常见的问题

#清除city字段中的字符空格
df['city']=df['city'].map(str.strip)

3.大小写转换

在英文字段中,字母的大小写不统一也是一个常见的问题。Excel中有UPPER,LOWER等函数,Python中也有同名函数用来解决 大小写的问题。

#city列大小写转换
df['city']=df['city'].str.lower()

4.更改数据格式

Excel中通过“设置单元格格式”功能可以修改数据格式。

Python中通过astype函数用来修改数据格式。

#更改数据格式
df['price'].astype('int')
0 1200
1 3299
2 2133
3 5433
4 3299
5 4432
Name: price, dtype: int32

5.更改列名称

Rename是更改列名称的函数,我们将来数据表中的category列更改为category-size。

#更改列名称
df.rename(columns={'category': 'category-size'})

6.删除重复值

Excel的数据目录下有“删除重复项”的功能

Python中使用drop_duplicates函数删除重复值

df['city']
0 beijing
1 sh
2 guangzhou
3 shenzhen
4 shanghai
5 beijing
Name: city, dtype: object

city列中beijing存在重复,分别在第一位和最后一位 drop_duplicates()函数删除重复值

#删除后出现的重复值
df['city'].drop_duplicates()
0 beijing
1 sh
2 guangzhou
3 shenzhen
4 shanghai
Name: city, dtype: object

设置keep='last‘’参数后,与之前删除重复值的结果相反,第一位 出现的beijing被删除

#删除先出现的重复值
df['city'].drop_duplicates(keep='last')
1 sh
2 guangzhou
3 shenzhen
4 shanghai
5 beijing
Name: city, dtype: objec

7.数值修改及替换

Excel中使用“查找和替换”功能就可以实现数值的替换

Python中使用replace函数实现数据替换

#数据替换
df['city'].replace('sh', 'shanghai')
0 beijing
1 shanghai
2 guangzhou
3 shenzhen
4 shanghai
5 beijing
Name: city, dtype: object

数据预处理

本章主要讲的是数据的预处理,对清洗完的数据进行整理以便后期的统计和分析工作。主要包括数据表的合并,排序,数值分列,数据分组及标记等工作。

1.数据表合并

在Excel中没有直接完成数据表合并的功能,可以通过VLOOKUP函数分步实现。在Python中可以通过merge函数一次性实现。

#建立df1数据表
df1=pd.DataFrame({"id":[1001,1002,1003,1004,1005,1006,1007,1008],
"gender":['male','female','male','female','male
','female','male','female'],
"pay":['Y','N','Y','Y','N','Y','N','Y',],
"m-point":[10,12,20,40,40,40,30,20]})

使用merge函数对两个数据表进行合并,合并的方式为inner,将 两个数据表中共有的数据匹配到一起生成新的数据表。并命名为 df_inner。

#数据表匹配合并
df_inner=pd.merge(df,df1,how='inner')

合并的方式还有left,right和outer方式

df_left=pd.merge(df,df1,how='left')
df_right=pd.merge(df,df1,how='right')
df_outer=pd.merge(df,df1,how='outer')

2.设置索引列

索引列可以进行数据提取,汇总,数据筛选

#设置索引列
df_inner.set_index('id')

3.排序(按索引,按数值)

Excel中可以通过数据目录下的排序按钮直接对数据表进行排 序

Python中需要使用ort_values函数和sort_index函数完成排序

#按特定列的值排序
df_inner.sort_values(by=['age'])

Sort_index函数用来将数据表按索引列的值进行排序。

#按索引列排序
df_inner.sort_index()

4.数据分组

Excel中可以通过VLOOKUP函数进行近似匹配来完成对数值的分组,或者使用“数据透视表”来完成分组

Python中使用Where函数用来对数据进行判断和分组

#如果price列的值>3000,group列显示high,否则显示low
df_inner['group'] = np.where(df_inner['price'] > 3000,'high','low
')

还可以对多个字段的值进行判断后对数据进行分组,下面的代码中对city列等于beijing并且price列大于等于4000的数据标记为1。

#对复合多个条件的数据进行分组标记
df_inner.loc[(df_inner['city'] == 'beijing') & (df_inner['price']
>= 4000), 'sign']=1

5.数据分列

Excel中的数据目录下提供“分列”功能。

在Python中使用split函数实现分列在数据表中category列中的数据包含有两个信息,前面的数字为类别id,后面的字母为size值。中间以连字符进行连接。我们使用split函数对这个字段进行拆分,并将拆分后的数据表匹配回原数据表中。

#对category字段的值依次进行分列,并创建数据表,索引值为df_inner的索引列,列名称为category和size
pd.DataFrame((x.split('-') for x in df_inner['category']),index=d
f_inner.index,columns=['category','size'])
#将完成分列后的数据表与原df_inner数据表进行匹配
df_inner=pd.merge(df_inner,split,right_index=True, left_index=Tru
e)

数据提取

1.按标签提取(loc)

#按索引提取单行的数值
df_inner.loc[3]
id 1004
date 2013-01-05 00:00:00
city shenzhen
category 110-C
age 32
price 5433
gender female
m-point 40
pay Y
group high
sign NaN
category_1 110
size C
Name: 3, dtype: object

使用冒号可以限定提取数据的范围,冒号前面为开始的标签值后面为结束的标签值。

#按索引提取区域行数值
df_inner.loc[0:5]

Reset_index函数用于恢复索引,这里我们重新将date字段的日期 设置为数据表的索引,并按日期进行数据提取。

#重设索引
df_inner.reset_index()
#设置日期为索引
df_inner=df_inner.set_index('date')
#提取4日之前的所有数据
df_inner[:'2013-01-04']

2.按位置提取(iloc)

使用iloc函数按位置对数据表中的数据进行提取,这里冒号前后 的数字不再是索引的标签名称,而是数据所在的位置,从0开始。

#使用iloc按位置区域提取数据
df_inner.iloc[:3,:2]

iloc函数除了可以按区域提取数据,还可以按位置逐条提取

#使用iloc按位置单独提取数据
df_inner.iloc[[0,2,5],[4,5]]

前面方括号中的0,2,5表示数据所在行的位置,后面方括号中的数表示所在列的位置。

3.按标签和位置提取(ix)

ix是loc和iloc的混合,既能按索引标签提取,也能按位置进行数 据提取.

#使用ix按索引标签和位置混合提取数据
df_inner.ix[:'2013-01-03',:4]

4.按条件提取(区域和条件值)

使用loc和isin两个函数配合使用,按指定条件对数据进行提取

#判断city列的值是否为beijing
df_inner['city'].isin(['beijing'])
date
2013-01-02 True
2013-01-05 False
2013-01-07 True
2013-01-06 False
2013-01-03 False
2013-01-04 False
Name: city, dtype: bool

将isin函数嵌套到loc的数据提取函数中,将判断结果为Ture数据 提取出来。这里我们把判断条件改为city值是否为beijing和shanghai。如果是就把这条数据提取出来。

#先判断city列里是否包含beijing和shanghai,然后将复合条件的数据提取出来。
df_inner.loc[df_inner['city'].isin(['beijing','shanghai'])]

数据筛选

按条件筛选(与、或、非)

Excel数据目录下提供了“筛选”功能,用于对数据表按不同的条 件进行筛选。

Python中使用loc函数配合筛选条件来完成筛选功能。配合sum和count函数还能实现Excel中sumif和countif函数的功能。使用“与”条件进行筛选,条件是年龄大于25岁,并且城市为 beijing。

#使用“与”条件进行筛选
df_inner.loc[(df_inner['age'] > 25) & (df_inner['city'] == 'beiji
ng'), ['id','city','age','category','gender']]/
#使用“或”条件筛选
df_inner.loc[(df_inner['age'] > 25) | (df_inner['city'] == 'beiji
ng'), ['id','city','age','category','gender']].sort(['age'])
#使用“非”条件进行筛选
df_inner.loc[(df_inner['city'] != 'beijing'), ['id','city','age',
'category','gender']].sort(['id'])

在前面的代码后面增加city列,并使用count函数进行计数。相当于Excel中的countifs函数的功能

#对筛选后的数据按city列进行计数
df_inner.loc[(df_inner['city'] != 'beijing'), ['id','city','age',
'category','gender']].sort(['id']).city.count()

还有一种筛选的方式是用query函数

#使用query函数进行筛选
df_inner.query('city == ["beijing", "shanghai"]')

在前面的代码后增加price字段和sum函数。对筛选后的price字段 进行求和,相当于Excel中的sumifs函数的功能。

#对筛选后的结果按price进行求和
df_inner.query('city == ["beijing", "shanghai"]').price.sum()
12230

数据汇总

Excel中使用分类汇总和数据透视可以按特定维度对数据进行汇总,Python中使用的主要函数是groupby和pivot_table。

1.分类汇总

#对所有列进行计数汇总
df_inner.groupby('city').count()/
#对特定的ID列进行计数汇总
df_inner.groupby('city')['id'].count()
city
beijing 2
guangzhou 1
shanghai 2
shenzhen 1
Name: id, dtype: int64
#对两个字段进行汇总计数
df_inner.groupby(['city','size'])['id'].count()
city size
beijing A 1
F 1
guangzhou A 1
shanghai A 1
B 1
shenzhen C 1
Name: id, dtype: int64

还可以对汇总后的数据同时按多个维度进行计算

#对city字段进行汇总并计算price的合计和均值。
df_inner.groupby('city')['price'].agg([len,np.sum, np.mean])

2.数据透视

Python中通过pivot_table函数实现同样的效果

#设定city为行字段,size为列字段,price为值字段。
分别计算price的数量和金额并且按行与列进行汇总。
pd.pivot_table(df_inner,index=["city"],values=["price"],columns=[
"size"],aggfunc=[len,np.sum],fill_value=0,margins=True)

数据统计

1.数据采样

Excel的数据分析功能中提供了数据抽样的功能

Python通过sample函数完成数据采样

#简单的数据采样
df_inner.sample(n=3)

Weights参数是采样的权重,通过设置不同的权重可以更改采样的结果

#手动设置采样权重
weights = [0, 0, 0, 0, 0.5, 0.5]
df_inner.sample(n=2, weights=weights)

Sample函数中参数replace,用来设置采样后是否放回

#采样后不放回
df_inner.sample(n=6, replace=False)
#采样后放回
df_inner.sample(n=6, replace=True)

2.描述统计

Python中可以通过Describe对数据进行描述统计

#数据表描述性统计
df_inner.describe().round(2).T

3.相关分析

Python中则通过corr函数完成相关分析的操作,并返回相关系数。

#相关性分析
df_inner['price'].corr(df_inner['m-point'])
0.77466555617085264
#数据表相关性分析
df_inner.corr()

数据输出

1.写入Excel

#输出到Excel格式
df_inner.to_Excel('Excel_to_Python.xlsx', sheet_name='bluewhale_c
c')

2.写入csv

#输出到CSV格式
df_inner.to_csv('Excel_to_Python.csv')
#在学习Python的过程中,往往因为没有资料或者没人指导从而导致自己不想学下去了,因此我特意准备了个群 592539176 ,群里有大量的PDF书籍、教程都给大家免费使用!不管是学习到哪个阶段的小伙伴都可以获取到自己相对应的资料!

参考

王彦平《从Excel到Python:数据分析进阶指南》

关于Excel,你一定用的到的36个Python函数的更多相关文章

  1. 干货--Excel的表格数据的一般处理和常用python模块。

    写在前面: 本文章的主要目的在于: 介绍了python常用的Excel处理模块:xlwt,xlrd,xllutils,openpyxl,pywin32的使用和应用场景. 本文只针对于Excel表中常用 ...

  2. 从Excel到Python:最常用的36个Pandas函数

    本文涉及pandas最常用的36个函数,通过这些函数介绍如何完成数据生成和导入.数据清洗.预处理,以及最常见的数据分类,数据筛选,分类汇总,透视等最常见的操作. 生成数据表 常见的生成数据表的方法有两 ...

  3. 条形码的应用三-----------从Excel文件中读取条形码

    条形码的应用三------从Excel文件中读取条形码 介绍 上一篇文章,我向大家展示了生成多个条形码并存储到Excel文件中的一个方法.后来我又有了个想法:既然条码插入到excel中了,我可不可以从 ...

  4. python excel操作

    python操作excel表格(xlrd/xlwt)转载:http://www.cnblogs.com/zhoujie/p/python18.html   最近遇到一个情景,就是定期生成并发送服务器使 ...

  5. Excel筛选之后如何下拉递增

    1.痛点 Excel表格,通过筛选了之后,再想统计行数,通过单纯的拖动或者填充排序啥的,都无法做到排序或行数递增: 2.解决方案 发现了个excel的公式可以完美解决该问题,赞个,找的好辛苦. 3.大 ...

  6. 一篇说尽Excel常见函数用法

    一篇说尽Excel常见函数用法 Word,PPT,Excel这三个Office软件是职场办公里最常用的三个软件,但是我发现简书上写PPT的教程多,Excel的少,即使有,也是零零散散.因为Excel的 ...

  7. 将excel文件批量转成pdf

    防止数据编辑.改动带来的不一致性,常常要将excel文件转成pdf文件再共享.发送给对方.有时excel文件还挺多,手头上保存实在是太慢了.就考虑用VBA批量转置. 掌握几个东西,就比较容易了: 1. ...

  8. C#中datatable导出excel(三种方法)

    方法一:(拷贝直接可以使用,适合大批量资料, 上万笔) Microsoft.Office.Interop.Excel.Application appexcel = new Microsoft.Offi ...

  9. C#读取Excel的三种方式以及比较

    (1)OleDB方式 优点:将Excel直接当做数据源处理,通过SQL直接读取内容,读取速度较快. 缺点:读取数据方式不够灵活,无法直接读取某一个单元格,只有将整个Sheet页读取出来后(结果为Dat ...

随机推荐

  1. Linux命令——细节

    echo -n 不换行输出 echo -e 处理特殊字符 若字符串中出现以下字符,则特别加以处理,而不会将它当成一般文字输出: \a 发出警告声: \b 删除前一个字符: \c 最后不加上换行符号:  ...

  2. Dubbo-服务注册中心之AbstractRegistryFactory等源码

    在上文中介绍了基础类AbstractRegistry类的解释,在本篇中将继续介绍该包下的其他类. FailbackRegistry 该类继承了AbstractRegistry,AbstractRegi ...

  3. C++ -> 在使用动态链表和异质链表产生野指针的步骤

    C++ -> 在使用动态链表和异质链表产生野指针的步骤 使用异质链表产生野指针的情况,下面是修改书本的例子: ------------------------------------------ ...

  4. element-ui的upload组件的clearFiles方法

    <template> <div> <el-button @click="clearFiles">重新上传</el-button> & ...

  5. Microsoft Visual Studio 显示行号

    工具下面有一个选项

  6. BZOJ3531 SDOI2014 旅行 - 树链剖分,主席树

    题意:给定一棵树,树上每个点有权值和类型.支持:修改某个点的类型:修改某个点的权值:询问某条链上某个类型的点的和/最大值.点数/类型数/询问数<=100000. 分析: 树链剖分,对每个类型的点 ...

  7. 我的翻译--GSMem:通过GSM频率从被物理隔离的计算机上窃取数据

    抽象概念 AG网络是指在物理上与公共互联网断开的网络.虽然近几年人们验证了入侵这类网络系统的可行性,但是从这种网络上获取数据仍然是一个有挑战的任务.在本文中,我们介绍GSMem,它是一个可以在蜂窝数据 ...

  8. cursor 把鼠标指针的形状弄成一只伸出食指的手

    <span style="cursor:auto">auto</span><br> <span style="cursor:cr ...

  9. easy_thinking

    登陆抓包,改成32位,根据tp6任意创建文件的漏洞,修改cookie. 上传文件. 木马在/runtime/session下, 然后传bypass文件绕过disablefunction,得到flag

  10. 野路子码农(5)Python中的装饰器,可能是最通俗的解说

    装饰器这个名词一听就充满了高级感,而且很多情况下确实也不常用.但装饰器有装饰器的好处,至少了解这个对装逼还是颇有益处的.网上有很多关于装饰器的解说,但通常都太过“循序渐进”,有的还会讲一些“闭包”之类 ...