目录
预训练源码结构简介
输入输出
源码解析
参数
主函数
创建训练实例
下一句预测&实例生成
随机遮蔽
输出
结果一览
预训练源码结构简介
关于BERT,简单来说,它是一个基于Transformer架构,结合遮蔽词预测和上下句识别的预训练NLP模型。至于效果:在11种不同NLP测试中创出最佳成绩
关于介绍BERT的文章我看了一些,个人感觉介绍的最全面的是机器之心
再放上谷歌官方源码链接:BERT官方源码
在看本博客之前,读者先要了解:
1.Transformer架构
2.BERT模型的创新之处
3.python语言及tensorflow框架
我会在代码中直接指出对应的原理,如果没有了解架构直接刚代码可能会有些吃力
BERT的预训练主要分为三个部分:
1.预训练数据的预处理(create_pretraining_data.py)
2.核心模型的构建(modeling.py)
3.训练过程(run_pretraining.py)
我将分三次分别介绍这三个部分的源码,这次先介绍训练数据的训练数据生成脚本即create_pretraining_data.py。

输入输出
关于输入和输出,我们可以直接从官方提供的训练命令行中窥之一二

python create_pretraining_data.py \
--input_file=./sample_text.txt \
--output_file=/tmp/tf_examples.tfrecord \
--vocab_file=$BERT_BASE_DIR/vocab.txt \
--do_lower_case=True \
--max_seq_length=128 \
--max_predictions_per_seq=20 \
--masked_lm_prob=0.15 \
--random_seed=12345 \
--dupe_factor=5
1
2
3
4
5
6
7
8
9
10
可以看到 这里谷歌为我们提供了一个小的训练样本sample_text.txt(输入),将这个训练样本进行处理后输出到**tf_examples.tfrecord(输出)**这个文件。在sample_text.txt中,空行前后是不同的文章,每个文章中的每句话都占一行(也就是说每篇文章的上下两行是一篇文章的上下句)。vocab_file是官方模型中提供的词汇表。
sample_text.txt

源码解析
参数
input_file:指定输入文档路径
output_file:指定输出路径
vocab_file:指定词典路径(谷歌已在预训练模型中提供)
do_lower_case:为True则忽略大小写
max_seq_length:每一条训练数据(两句话)相加后的最大长度限制
max_predictions_per_seq:每一条训练数据mask的最大数量
random_seed:一个随机种子
dupe_factor:对文档多次重复随机产生训练集,随机的次数
masked_lm_prob:一条训练数据产生mask的概率,即每条训练数据随机产生max_predictions_per_seq×masked_lm_prob数量的mask
short_seq_prob:为了缩小预训练和微调过程的差距,以此概率产生小于max_seq_length的训练数据

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections
import random

import tokenization
import tensorflow as tf

flags = tf.flags

FLAGS = flags.FLAGS

flags.DEFINE_string("input_file", None,
"Input raw text file (or comma-separated list of files).")

flags.DEFINE_string(
"output_file", None,
"Output TF example file (or comma-separated list of files).")

flags.DEFINE_string("vocab_file", None,
"The vocabulary file that the BERT model was trained on.")

flags.DEFINE_bool(
"do_lower_case", True,
"Whether to lower case the input text. Should be True for uncased "
"models and False for cased models.")

flags.DEFINE_integer("max_seq_length", 128, "Maximum sequence length.")

flags.DEFINE_integer("max_predictions_per_seq", 20,
"Maximum number of masked LM predictions per sequence.")

flags.DEFINE_integer("random_seed", 12345, "Random seed for data generation.")

flags.DEFINE_integer(
"dupe_factor", 10,
"Number of times to duplicate the input data (with different masks).")

flags.DEFINE_float("masked_lm_prob", 0.15, "Masked LM probability.")

flags.DEFINE_float(
"short_seq_prob", 0.1,
"Probability of creating sequences which are shorter than the "
"maximum length.")
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
主函数
首先获取输入文本列表,对输入文本创建训练实例,再进行输出
简要介绍一下FullTokenizer这个类,它以vocab_file为词典,将词转化为该词对应的id,对于某些特殊词,如johanson,会先将johanson按照最大长度拆分,再看拆分的部分是否在vocab_file里。vocab_file里有没有"johanson"这个词,但有"johan"和"##son"这两个词,所以将"johanson"这个词拆分成两个词(##表示非开头匹配)

def main(_):
tf.logging.set_verbosity(tf.logging.INFO)

tokenizer = tokenization.FullTokenizer(
vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)

input_files = []
for input_pattern in FLAGS.input_file.split(","):
input_files.extend(tf.gfile.Glob(input_pattern)) #获得输入文件列表

tf.logging.info("*** Reading from input files ***")
for input_file in input_files:
tf.logging.info(" %s", input_file)

rng = random.Random(FLAGS.random_seed)
instances = create_training_instances( #创建训练实例
input_files, tokenizer, FLAGS.max_seq_length, FLAGS.dupe_factor,
FLAGS.short_seq_prob, FLAGS.masked_lm_prob, FLAGS.max_predictions_per_seq,
rng)

output_files = FLAGS.output_file.split(",")
tf.logging.info("*** Writing to output files ***")
for output_file in output_files:
tf.logging.info(" %s", output_file)

write_instance_to_example_files(instances, tokenizer, FLAGS.max_seq_length, #输出
FLAGS.max_predictions_per_seq, output_files)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
创建训练实例
这部分先将文章和每篇文章的每个句子加到二维列表,再将列表传入create_instances_from_document生成训练实例.
返回值:instances 一个列表 里面包含每个样例的TrainingInstance类

def create_training_instances(input_files, tokenizer, max_seq_length,
dupe_factor, short_seq_prob, masked_lm_prob,
max_predictions_per_seq, rng):
"""Create `TrainingInstance`s from raw text."""
all_documents = [[]]

# Input file format:
# (1) One sentence per line. These should ideally be actual sentences, not
# entire paragraphs or arbitrary spans of text. (Because we use the
# sentence boundaries for the "next sentence prediction" task).
# (2) Blank lines between documents. Document boundaries are needed so
# that the "next sentence prediction" task doesn't span between documents.
for input_file in input_files:
with tf.gfile.GFile(input_file, "r") as reader:
while True:
line = tokenization.convert_to_unicode(reader.readline())
if not line:
break
line = line.strip()

# Empty lines are used as document delimiters
if not line:
all_documents.append([])
tokens = tokenizer.tokenize(line)
if tokens:
all_documents[-1].append(tokens) #二维列表 [文章,句子]

# Remove empty documents
all_documents = [x for x in all_documents if x] #删除空列表
rng.shuffle(all_documents) #随机排序

vocab_words = list(tokenizer.vocab.keys())
instances = []
for _ in range(dupe_factor):
for document_index in range(len(all_documents)):
instances.extend(
create_instances_from_document(
all_documents, document_index, max_seq_length, short_seq_prob,
masked_lm_prob, max_predictions_per_seq, vocab_words, rng))

rng.shuffle(instances)
return instances
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
下一句预测&实例生成
这部分是生成训练数据的具体过程,对每条数据生成TrainingInstance。这里的每条数据其实包含两个句子的信息。TrainingInstance包括tokens,segement_ids,is_random_next,masked_lm_positions,masked_lm_labels。下面给出这些属性的含义
tokens:词
segement_id:句子编码 第一句为0 第二句为1
is_random_next:第二句是随机查找,还是为第一句的下文
masked_lm_positions:tokens中被mask的位置
masked_lm_labels:tokens中被mask的原来的词
本部分含有BERT的创新点之一:下一句预测 类标的生成
返回值:instances
以下在关键代码出进行注释

def create_instances_from_document(
all_documents, document_index, max_seq_length, short_seq_prob,
masked_lm_prob, max_predictions_per_seq, vocab_words, rng):
"""Creates `TrainingInstance`s for a single document."""
document = all_documents[document_index]

# Account for [CLS], [SEP], [SEP]
max_num_tokens = max_seq_length - 3

# We *usually* want to fill up the entire sequence since we are padding
# to `max_seq_length` anyways, so short sequences are generally wasted
# computation. However, we *sometimes*
# (i.e., short_seq_prob == 0.1 == 10% of the time) want to use shorter
# sequences to minimize the mismatch between pre-training and fine-tuning.
# The `target_seq_length` is just a rough target however, whereas
# `max_seq_length` is a hard limit.
target_seq_length = max_num_tokens
if rng.random() < short_seq_prob: #产生一个随机数如果小于short_seq_prob 则产生一个较短的训练序列
target_seq_length = rng.randint(2, max_num_tokens)

# We DON'T just concatenate all of the tokens from a document into a long
# sequence and choose an arbitrary split point because this would make the
# next sentence prediction task too easy. Instead, we split the input into
# segments "A" and "B" based on the actual "sentences" provided by the user
# input.
instances = []
current_chunk = [] #产生训练集的候选集
current_length = 0
i = 0
while i < len(document):
segment = document[i]
current_chunk.append(segment)
current_length += len(segment)
if i == len(document) - 1 or current_length >= target_seq_length:
if current_chunk:
# `a_end` is how many segments from `current_chunk` go into the `A`
# (first) sentence.
a_end = 1
if len(current_chunk) >= 2:
a_end = rng.randint(1, len(current_chunk) - 1) #从current_chunk中随机选出一个文档作为句子1的截止文档

tokens_a = []
for j in range(a_end):
tokens_a.extend(current_chunk[j]) #将截止文档之前的文档都加入到tokens_a

tokens_b = []
# Random next
is_random_next = False
if len(current_chunk) == 1 or rng.random() < 0.5: #候选集只有一句的情况则随机抽取句子作为句子2;或以0.5的概率随机抽取句子作为句子2
is_random_next = True
target_b_length = target_seq_length - len(tokens_a)

# This should rarely go for more than one iteration for large
# corpora. However, just to be careful, we try to make sure that
# the random document is not the same as the document
# we're processing.
for _ in range(10):
random_document_index = rng.randint(0, len(all_documents) - 1)
if random_document_index != document_index:
break

random_document = all_documents[random_document_index] #随机找一个文档作为截止文档
random_start = rng.randint(0, len(random_document) - 1) #随机找一个初始文档
for j in range(random_start, len(random_document)):
tokens_b.extend(random_document[j]) #将随机文档加入到token_b
if len(tokens_b) >= target_b_length:
break
# We didn't actually use these segments so we "put them back" so
# they don't go to waste.
num_unused_segments = len(current_chunk) - a_end
i -= num_unused_segments
# Actual next
else:
is_random_next = False 以第1句的后续作为句子2
for j in range(a_end, len(current_chunk)):
tokens_b.extend(current_chunk[j])
truncate_seq_pair(tokens_a, tokens_b, max_num_tokens, rng) #对两个句子进行长度剪裁

assert len(tokens_a) >= 1
assert len(tokens_b) >= 1

tokens = []
segment_ids = []
tokens.append("[CLS]")
segment_ids.append(0)
for token in tokens_a:
tokens.append(token)
segment_ids.append(0)

tokens.append("[SEP]")
segment_ids.append(0)

for token in tokens_b:
tokens.append(token)
segment_ids.append(1)
tokens.append("[SEP]")
segment_ids.append(1)

(tokens, masked_lm_positions,
masked_lm_labels) = create_masked_lm_predictions( #对token创建mask
tokens, masked_lm_prob, max_predictions_per_seq, vocab_words, rng)
instance = TrainingInstance(
tokens=tokens,
segment_ids=segment_ids,
is_random_next=is_random_next,
masked_lm_positions=masked_lm_positions,
masked_lm_labels=masked_lm_labels)
instances.append(instance)
current_chunk = []
current_length = 0
i += 1

return instances
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
随机遮蔽
这部分对token进行随机mask。这部分是BERT的创新点之二,随机遮蔽。为了防止双向模型在多层之后“看到自己”。这里对一部分词进行随机遮蔽,并在预训练中进行预测。遮蔽方案:
1.以80%的概率直接变成[MASK]
2.以10%的概率保留原词
3.以10%的概率在词典中随机找一个词替代
返回值:经过随机遮蔽后的(词,遮蔽位置,遮蔽前原词)

def create_masked_lm_predictions(tokens, masked_lm_prob,
max_predictions_per_seq, vocab_words, rng):
"""Creates the predictions for the masked LM objective."""

cand_indexes = []
for (i, token) in enumerate(tokens):
if token == "[CLS]" or token == "[SEP]":
continue
cand_indexes.append(i)

rng.shuffle(cand_indexes) #打乱顺序

output_tokens = list(tokens)

masked_lm = collections.namedtuple("masked_lm", ["index", "label"]) # p定义一个名为masked_lm的元组,里面有两个属性

num_to_predict = min(max_predictions_per_seq,
max(1, int(round(len(tokens) * masked_lm_prob)))) #所有要mask的词的数量为定值,取两个定义好参数的最小值

masked_lms = []
covered_indexes = set()
for index in cand_indexes:
if len(masked_lms) >= num_to_predict:
break
if index in covered_indexes:
continue
covered_indexes.add(index) #要被mask的词的index

masked_token = None
# 80% of the time, replace with [MASK]
if rng.random() < 0.8:
masked_token = "[MASK]"
else:
# 10% of the time, keep original
if rng.random() < 0.5:
masked_token = tokens[index]
# 10% of the time, replace with random word
else:
masked_token = vocab_words[rng.randint(0, len(vocab_words) - 1)]

output_tokens[index] = masked_token #用masked_token替换原词

masked_lms.append(masked_lm(index=index, label=tokens[index]))

masked_lms = sorted(masked_lms, key=lambda x: x.index)

masked_lm_positions = []
masked_lm_labels = []
for p in masked_lms:
masked_lm_positions.append(p.index) #被mask的index
masked_lm_labels.append(p.label) #被mask的label(即原词)

return (output_tokens, masked_lm_positions, masked_lm_labels)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
输出
最后是将处理好的数据保存为tfrecord文件。首先将token转为id,增加input_mask用于记录实句长度。最后将不到最大长度的部分用0补齐。

def write_instance_to_example_files(instances, tokenizer, max_seq_length,
max_predictions_per_seq, output_files):
"""Create TF example files from `TrainingInstance`s."""
writers = []
for output_file in output_files:
writers.append(tf.python_io.TFRecordWriter(output_file))

writer_index = 0

total_written = 0
for (inst_index, instance) in enumerate(instances):
input_ids = tokenizer.convert_tokens_to_ids(instance.tokens) #词转id
input_mask = [1] * len(input_ids)
segment_ids = list(instance.segment_ids)
assert len(input_ids) <= max_seq_length

while len(input_ids) < max_seq_length: #未到最大长度时后面补0
input_ids.append(0)
input_mask.append(0)
segment_ids.append(0)

assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length

masked_lm_positions = list(instance.masked_lm_positions) #mask位置记录
masked_lm_ids = tokenizer.convert_tokens_to_ids(instance.masked_lm_labels) #mask预测值转id
masked_lm_weights = [1.0] * len(masked_lm_ids) #mask位置的权重都为1,用于排除后续的“0”以便loss计算

while len(masked_lm_positions) < max_predictions_per_seq: #补0
masked_lm_positions.append(0)
masked_lm_ids.append(0)
masked_lm_weights.append(0.0)

next_sentence_label = 1 if instance.is_random_next else 0

features = collections.OrderedDict()
features["input_ids"] = create_int_feature(input_ids)
features["input_mask"] = create_int_feature(input_mask)
features["segment_ids"] = create_int_feature(segment_ids)
features["masked_lm_positions"] = create_int_feature(masked_lm_positions)
features["masked_lm_ids"] = create_int_feature(masked_lm_ids)
features["masked_lm_weights"] = create_float_feature(masked_lm_weights)
features["next_sentence_labels"] = create_int_feature([next_sentence_label])

tf_example = tf.train.Example(features=tf.train.Features(feature=features)) #生成训练样例

writers[writer_index].write(tf_example.SerializeToString()) #输出到文件
writer_index = (writer_index + 1) % len(writers)

total_written += 1

if inst_index < 20: 对前20个训练样例进行打印
tf.logging.info("*** Example ***")
tf.logging.info("tokens: %s" % " ".join(
[tokenization.printable_text(x) for x in instance.tokens]))

for feature_name in features.keys():
feature = features[feature_name]
values = []
if feature.int64_list.value:
values = feature.int64_list.value
elif feature.float_list.value:
values = feature.float_list.value
tf.logging.info(
"%s: %s" % (feature_name, " ".join([str(x) for x in values])))

for writer in writers:
writer.close()

tf.logging.info("Wrote %d total instances", total_written)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
结果一览
最后打印的结果是这酱的

谷歌对训练数据的处理就介绍这么多,如果有错误欢迎大家批评指正,如果有问题也欢迎大家提问互相探讨。关于模型篇的代码解析我会在下一篇博客中给出。
---------------------
作者:保持一份率性
来源:CSDN
原文:https://blog.csdn.net/weixin_39470744/article/details/84373933
版权声明:本文为博主原创文章,转载请附上博文链接!

谷歌BERT预训练源码解析(一):训练数据生成的更多相关文章

  1. [源码解析] 分布式训练Megatron (1) --- 论文 & 基础

    [源码解析] 分布式训练Megatron (1) --- 论文 & 基础 目录 [源码解析] 分布式训练Megatron (1) --- 论文 & 基础 0x00 摘要 0x01 In ...

  2. 谷歌BERT预训练源码解析(三):训练过程

    目录前言源码解析主函数自定义模型遮蔽词预测下一句预测规范化数据集前言本部分介绍BERT训练过程,BERT模型训练过程是在自己的TPU上进行的,这部分我没做过研究所以不做深入探讨.BERT针对两个任务同 ...

  3. 谷歌BERT预训练源码解析(二):模型构建

    目录前言源码解析模型配置参数BertModelword embeddingembedding_postprocessorTransformerself_attention模型应用前言BERT的模型主要 ...

  4. jquery源码解析:jQuery数据缓存机制详解2

    上一课主要讲了jQuery中的缓存机制Data构造方法的源码解析,这一课主要讲jQuery是如何利用Data对象实现有关缓存机制的静态方法和实例方法的.我们接下来,来看这几个静态方法和实例方法的源码解 ...

  5. jquery源码解析:jQuery数据缓存机制详解1

    jQuery中有三种添加数据的方法,$().attr(),$().prop(),$().data().但是前面两种是用来在元素上添加属性值的,只适合少量的数据,比如:title,class,name等 ...

  6. 时序数据库 Apache-IoTDB 源码解析之文件数据块(四)

    上一章聊到行式存储.列式存储的基本概念,并介绍了 TsFile 是如何存储数据以及基本概念.详情请见: 时序数据库 Apache-IoTDB 源码解析之文件格式简介(三) 打一波广告,欢迎大家访问Io ...

  7. 第三十四节,目标检测之谷歌Object Detection API源码解析

    我们在第三十二节,使用谷歌Object Detection API进行目标检测.训练新的模型(使用VOC 2012数据集)那一节我们介绍了如何使用谷歌Object Detection API进行目标检 ...

  8. 语义分割丨PSPNet源码解析「训练阶段」

    引言 之前一段时间在参与语义分割的项目,最近有时间了,正好把这段时间的所学总结一下. 在代码上,语义分割的框架会比目标检测简单很多,但其中也涉及了很多细节.在这篇文章中,我以PSPNet为例,解读一下 ...

  9. 多目标遗传算法 ------ NSGA-II (部分源码解析) 临时种群生成新父代种群 fillnds.c

    /* Nond-domination based selection routines */ # include <stdio.h> # include <stdlib.h> ...

随机推荐

  1. dom4解析 XML

    Java XML解析工具 dom4j介绍及使用实例 Java XML解析工具 dom4j介绍及使用实例 dom4j介绍 dom4j的项目地址:http://sourceforge.net/projec ...

  2. python 数据组合

  3. Windows Phpstrom svn 配置

    网上百度找到的解决方案行不通,就是下图两项都不选中.临时是可以的,但是到了第二天,又不行了. 以下是自己瞎弄的,居然可以了. 第一步:安装TortoiseSVN 1.8.* ,注意安装选项要选上com ...

  4. AppScan操作手册

    AppScan操作手册 转自:http://blog.51cto.com/zhouanya/1388681   1.SQL注入 1.1.什么是sql注入 所谓SQL注入(SQL Injection), ...

  5. [Vue CLI 3] Uglify 相关的应用和设计

    在本文开始之前,先留一个问题? 如果在新版本我想加一个 drop_console 的配置呢? 在老版本的脚手架生成的配置中,对于线上环境的文件:webpack.prod.conf.js 使用了插件:u ...

  6. 使用C3P0和DBUtils

    1.导包 2.配置c3p0-config.xml <?xml version="1.0" encoding="UTF-8"?> <c3p0-c ...

  7. 开启php中短标签<%%>和<??>的方法

    <?  ?> 短标签,兼容的,PHP默认也不支持,需要在php的配置文件中设置! 去到php.ini中开启下面的 <%  %> ASP风格!也是兼容的,也需要配置:

  8. 大数据技术之Kafka

    Kafka概述 1.1 消息队列     (1)点对点模式(一对一,消费者主动拉取数据,消息收到后消息清除) 点对点模型通常是一个基于拉取或者轮询的消息传送模型,这种模型从队列中请求信息,而不是将消息 ...

  9. ios开发使用Basic Auth 认证方式

    http://blog.csdn.net/joonchen111/article/details/48447813 我们app的开发通常有2种认证方式   一种是Basic Auth,一种是OAuth ...

  10. CF789D Mike and distribution

    题目连接 一道人类智慧题.... 这道题目可以转化为在a,b中的选出一些位置,使得这些位置处的值加起来大于没有选的位置的值 我们按照a的权值排序,选择第一个元素,其与元素两两分组,每组选择b更大的那一 ...