题意:

给出一些字符和各自对应的选择概率,随机选择L次后得到一个长度为L的随机字符串S。

给出K个模板串,计算S不包含任何一个模板串的概率

dp【i】【j】表示走到AC自动机 i 这个节点 还需要走 j 步的概率。

表示不会概率DP ,看网上题解写的。

通过记忆化搜索去写。

注意一点字符有大小字母和数字

 #include <set>
#include <map>
#include <stack>
#include <queue>
#include <cmath>
#include <ctime>
#include <cstdio>
#include <string>
#include <vector>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <unordered_map> #define pi acos(-1.0)
#define eps 1e-9
#define fi first
#define se second
#define rtl rt<<1
#define rtr rt<<1|1
#define bug printf("******\n")
#define mem(a, b) memset(a,b,sizeof(a))
#define name2str(x) #x
#define fuck(x) cout<<#x" = "<<x<<endl
#define sfi(a) scanf("%d", &a)
#define sffi(a, b) scanf("%d %d", &a, &b)
#define sfffi(a, b, c) scanf("%d %d %d", &a, &b, &c)
#define sffffi(a, b, c, d) scanf("%d %d %d %d", &a, &b, &c, &d)
#define sfL(a) scanf("%lld", &a)
#define sffL(a, b) scanf("%lld %lld", &a, &b)
#define sfffL(a, b, c) scanf("%lld %lld %lld", &a, &b, &c)
#define sffffL(a, b, c, d) scanf("%lld %lld %lld %lld", &a, &b, &c, &d)
#define sfs(a) scanf("%s", a)
#define sffs(a, b) scanf("%s %s", a, b)
#define sfffs(a, b, c) scanf("%s %s %s", a, b, c)
#define sffffs(a, b, c, d) scanf("%s %s %s %s", a, b,c, d)
#define FIN freopen("../in.txt","r",stdin)
#define gcd(a, b) __gcd(a,b)
#define lowbit(x) x&-x
#define IO iOS::sync_with_stdio(false) using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
const ULL seed = ;
const LL INFLL = 0x3f3f3f3f3f3f3f3fLL;
const int maxn = 1e6 + ;
const int maxm = 8e6 + ;
const int INF = 0x3f3f3f3f;
const int mod = 1e9 + ;
int T, n, m, L, id[], vis[][];
char buf[];
double dp[][], pro[]; int get_num(char ch) {
if (ch >= 'a' && ch <= 'z') return ch - 'a';
if (ch >= 'A' && ch <= 'Z') return ch - 'A' + ;
if (ch >= '' && ch <= '') return ch - '' + ;
} struct Aho_Corasick {
int next[][], fail[], End[];
int root, cnt; int newnode() {
for (int i = ; i < ; i++) next[cnt][i] = -;
End[cnt++] = ;
return cnt - ;
} void init() {
cnt = ;
root = newnode();
} void insert(char buf[]) {
int len = strlen(buf);
int now = root;
for (int i = ; i < len; i++) {
if (next[now][get_num(buf[i])] == -) next[now][get_num(buf[i])] = newnode();
now = next[now][get_num(buf[i])];
}
End[now] = ;
} void build() {
queue<int> Q;
fail[root] = root;
for (int i = ; i < ; i++)
if (next[root][i] == -) next[root][i] = root;
else {
fail[next[root][i]] = root;
Q.push(next[root][i]);
}
while (!Q.empty()) {
int now = Q.front();
Q.pop();
End[now] |= End[fail[now]];
for (int i = ; i < ; i++)
if (next[now][i] == -) next[now][i] = next[fail[now]][i];
else {
fail[next[now][i]] = next[fail[now]][i];
Q.push(next[now][i]);
}
}
} double solve(int pos, int res) {
if (!res) return 1.0;
if (vis[pos][res]) return dp[pos][res];
vis[pos][res] = ;
double &ret = dp[pos][res];
ret = ;
for (int i = ; i < m; ++i) {
int idx = id[i];
if (!End[next[pos][idx]]) ret += pro[i] * solve(next[pos][idx], res - );
}
return ret;
} void debug() {
for (int i = ; i < cnt; i++) {
printf("id = %3d,fail = %3d,end = %3d,chi = [", i, fail[i], End[i]);
for (int j = ; j < ; j++) printf("%2d", next[i][j]);
printf("]\n");
}
}
} ac; int main() {
// FIN;
int cas = ;
sfi(T);
while (T--) {
sfi(n);
ac.init();
for (int i = ; i < n; ++i) {
sfs(buf);
ac.insert(buf);
}
ac.build();
sfi(m);
for (int i = ; i < m; ++i) {
scanf("%s%lf", buf, &pro[i]);
id[i] = get_num(buf[]);
}
sfi(L);
mem(vis, );
printf("Case #%d: %.6f\n", cas++, ac.solve(, L));
}
return ;
}

Substring UVA - 11468 AC自动机+概率DP的更多相关文章

  1. UVa 11468 (AC自动机 概率DP) Substring

    将K个模板串构成一个AC自动机,那些能匹配到的单词节点都称之为禁止节点. 然后问题就变成了在Tire树上走L步且不经过禁止节点的概率. 根据全概率公式用记忆化搜索求解. #include <cs ...

  2. uva 11468 AC自动机+概率DP

    #include<cstdio> #include<cstring> #include<queue> #include<cstdio> #include ...

  3. UVa 11468 Substring (AC自动机+概率DP)

    题意:给出一个字母表以及每个字母出现的概率.再给出一些模板串S.从字母表中每次随机拿出一个字母,一共拿L次组成一个产度为L的串, 问这个串不包含S中任何一个串的概率为多少? 析:先构造一个AC自动机, ...

  4. UVA11468 Substring --- AC自动机 + 概率DP

    UVA11468 Substring 题目描述: 给定一些子串T1...Tn 每次随机选择一个字符(概率会给出) 构造一个长为n的串S,求T1...Tn不是S的子串的概率 直接把T1...Tn建成AC ...

  5. Uva 11468 AC自动机或运算

    AC自动机 UVa 11468 题意:给一些字符和各自出现的概率,在其中随机选择L次,形成长度为L的字符串S,给定K个模板串,求S不包含任意一个串的概率. 首先介绍改良版的AC自动机: 传统的AC自动 ...

  6. 2016ACM/ICPC亚洲区沈阳站H - Guessing the Dice Roll HDU - 5955 ac自动机+概率dp+高斯消元

    http://acm.hdu.edu.cn/showproblem.php?pid=5955 题意:给你长度为l的n组数,每个数1-6,每次扔色子,问你每个串第一次被匹配的概率是多少 题解:先建成ac ...

  7. 【BZOJ1444】[Jsoi2009]有趣的游戏 AC自动机+概率DP+矩阵乘法

    [BZOJ1444][Jsoi2009]有趣的游戏 Description Input 注意 是0<=P Output Sample Input Sample Output HINT  30%的 ...

  8. bzoj1444 有趣的游戏(AC自动机+概率dp)

    题意: 给定n个长度为l的模式串,现在要用前m个大写字母生成一个随机串,每个字符有自己的出现几率,第一次出现的字符串获胜,求最终每个字符串的获胜几率. 分析: 容易想到先把所有的字符串建成一个AC自动 ...

  9. BZOJ1444[Jsoi2009]有趣的游戏——AC自动机+概率DP+矩阵乘法

    题目描述 输入 注意 是0<=P, n , l, m≤ 10. 输出 样例输入 input 1 3 2 2 1 2 1 2 AB BA AA input 2 3 4 2 1 2 1 2 AABA ...

随机推荐

  1. linux:lrzsz安装

    Linux中的lrzsc是linux里可代替ftp上传和下载的程序. yum install lrzsc 没有可用软件包 lrzsc. 这时使用 -y即可安装 centos安装:yum -y inst ...

  2. Dubbo入门到精通学习笔记(十六):Keepalived+Nginx实现高可用Web负载均衡

    文章目录 Keepalived+Nginx实现高可用Web负载均衡 Keepalived+Nginx实现高可用Web负载均衡 高可用架构篇 Keepalived + Nginx 实现高可用 Web 负 ...

  3. Jeecg集成Swagger-ui

    <context:component-scan base-package="springfox"/> <bean class="org.jeecgfra ...

  4. FreeBSD_11-系统管理——{Part_9-SVN}

    一.使用 svn / svnlite 代替 freebsd-update 及 portsnap 等常规工具更新系统及 ports 源码 二.安装可信 ca 机构列表 cd /usr/ports/sec ...

  5. 谷歌与Airbnb的JS代码规范

    谷歌JS代码规范 规范代码原因:代码规范是为了保持源代码编写模式一致,便于维护代码,可读性高. 1.使用空格代替tab 规范随后指出应该使用2个,而不是4个空格带实现缩进.(除了每一行的终止符序列,A ...

  6. 设计模式四人帮(GOF)是什么?

    1994年,有四位作者:Erich Gamma,Richard Helm,Ralph Johnson和John Vlissides发表了一本题为<设计模式 - 可重用的面向对象软件元素>的 ...

  7. 2.执行计划(explain)分析

    1.使用场景 获取执行计划命令:在select 命令前加上explain 或 desc explain select 或 desc select 1.语句执行之前 :防患于未然 2.出现慢语句时 :亡 ...

  8. Feign 系列(01)最简使用姿态

    目录 Feign 系列(01)最简使用姿态 1. 引入 maven 依赖 2. 基本用法 3. Feign 声明式注解 Feign 系列(01)最简使用姿态 Spring Cloud 系列目录(htt ...

  9. VS2015 定时服务及控制端

    一.  服务端 如下图—新建项目—经典桌面—Windows服务—起名svrr 2. 打到server1 改名为svrExecSqlInsert 右击对应的设计界面,添加安装服务目录结构如图 3. sv ...

  10. Python移动自动化测试面试✍✍✍

    Python移动自动化测试面试  整个课程都看完了,这个课程的分享可以往下看,下面有链接,之前做java开发也做了一些年头,也分享下自己看这个视频的感受,单论单个知识点课程本身没问题,大家看的时候可以 ...