Hie with the Pie

Description

The Pizazz Pizzeria prides itself in delivering pizzas to its customers as fast as possible. Unfortunately, due to cutbacks, they can afford to hire only one driver to do the deliveries. He will wait for 1 or more (up to 10) orders to be processed before he starts any deliveries. Needless to say, he would like to take the shortest route in delivering these goodies and returning to the pizzeria, even if it means passing the same location(s) or the pizzeria more than once on the way. He has commissioned you to write a program to help him.

Input

Input will consist of multiple test cases. The first line will contain a single integer n indicating the number of orders to deliver, where 1 ≤ n ≤ 10. After this will be n + 1 lines each containing n + 1 integers indicating the times to travel between the pizzeria (numbered 0) and the n locations (numbers 1 to n). The jth value on the ith line indicates the time to go directly from location i to location j without visiting any other locations along the way. Note that there may be quicker ways to go from i to j via other locations, due to different speed limits, traffic lights, etc. Also, the time values may not be symmetric, i.e., the time to go directly from location i to j may not be the same as the time to go directly from location j to i. An input value of n = 0 will terminate input.

Output

For each test case, you should output a single number indicating the minimum time to deliver all of the pizzas and return to the pizzeria.

Sample Input

3
0 1 10 10
1 0 1 2
10 1 0 10
10 2 10 0
0

Sample Output

8

人话:输入一个数n,现在有n个地方(标号1到n)要从标号为0的地方出去,经过所有的地方之后回来,求最短的时间,输入(n+1)*(n+1)的矩阵表示每两点之间到达所需要的时间

首先,先把每两个点之间的最短路求出来,使用floyd搞定

然后开始状压dp

我们把当前去过哪些点进行状压,i二进制表示从左到右第k位表示第k个点是否访问过

那么我们就可以把dp数组搞出来了,\(f[i][j]\)表示在已访问i状态这么多点的情况下,重点是j的最短路

状态转移方程就是:

\(f[i|(1<<k)][k] = f[i][j]+dis[j][k]\)

还有,起始点状态记得初始化

Code:

#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
#include <iostream>
#define reg register
using namespace std;
const int MaxN=11;
const int inf=0x3f3f3f3f;
template <class t> inline void rd(t &s)
{
s=0;
reg char c=getchar();
while(!isdigit(c))
c=getchar();
while(isdigit(c))
s=(s<<3)+(s<<1)+(c^48),c=getchar();
return;
}
int n;
int f[(1<<MaxN)+1][MaxN];
int G[MaxN][MaxN],dis[MaxN][MaxN];
inline void work()
{
memset(f,0x3f,sizeof f);f[1][0]=0;
for(int i=0;i<=n;++i)
for(int j=0;j<=n;++j)
rd(G[i][j]),dis[i][j]=G[i][j];
for(int k=0;k<=n;++k)
for(int i=0;i<=n;++i) if(k!=i)
for(int j=0;j<=n;++j) if(i!=j)
dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);
for(int i=1;i<(1<<(n+1));++i)
{
for(int j=0;j<=n;++j) if(f[i][j]!=inf)
for(int k=0;k<=n;++k)
if(j!=k)
f[i|(1<<k)][k]=min(f[i|(1<<k)][k],f[i][j]+dis[j][k]);
}
reg int u=(1<<(n+1))-1;
printf("%d\n",f[u][0]);
return;
}
signed main(void)
{
while(cin>>n&&n)
work();
return 0;
}

<状压DP>solution-POJ3311_Hie with the Pie的更多相关文章

  1. POJ3311 Hie with the Pie 【状压dp/TSP问题】

    题目链接:http://poj.org/problem?id=3311 Hie with the Pie Time Limit: 2000MS   Memory Limit: 65536K Total ...

  2. POJ 3311 Hie with the Pie (状压DP)

    dp[i][j][k] i代表此层用的状态序号 j上一层用的状态序号 k是层数&1(滚动数组) 标准流程 先预处理出所有合法数据存在status里 然后独立处理第一层 然后根据前一层的max推 ...

  3. 状压dp+floyed(C - Hie with the Pie POJ - 3311 )

    题目链接:https://cn.vjudge.net/contest/276236#problem/C 题目大意: 给你一个有n+1(1<=n<=10)个点的有向完全图,用矩阵的形式给出任 ...

  4. Hie with the Pie(POJ3311+floyd+状压dp+TSP问题dp解法)

    题目链接:http://poj.org/problem?id=3311 题目: 题意:n个城市,每两个城市间都存在距离,问你恰好经过所有城市一遍,最后回到起点(0)的最短距离. 思路:我们首先用flo ...

  5. poj 3311 Hie with the Pie 经过所有点(可重)的最短路径 floyd + 状压dp

    题目链接 题意 给定一个\(N\)个点的完全图(有向图),求从原点出发,经过所有点再回到原点的最短路径长度(可重复经过中途点). 思路 因为可多次经过同一个点,所以可用floyd先预处理出每两个点之间 ...

  6. POJ 3311 Hie with the Pie (状压DP)

    题意: 每个点都可以走多次的TSP问题:有n个点(n<=11),从点1出发,经过其他所有点至少1次,并回到原点1,使得路程最短是多少? 思路: 同HDU 5418 VICTOR AND WORL ...

  7. 【POJ3311】Hie with the Pie(状压DP,最短路)

    题意: 思路:状压DP入门题 #include<cstdio> #include<cstdlib> #include<algorithm> #include< ...

  8. 【BZOJ-1097】旅游景点atr SPFA + 状压DP

    1097: [POI2007]旅游景点atr Time Limit: 30 Sec  Memory Limit: 357 MBSubmit: 1531  Solved: 352[Submit][Sta ...

  9. BZOJ 1087 题解【状压DP】

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3112  Solved: 1816[Submit][ ...

随机推荐

  1. ELK学习实验006:Nginx的日志分析系统之filebeat配置

    一 Filebeat工作原理 Filebeat由两个主要组件组成: prospector和 harvester 1.1 harvester 负责读取单个文件的内容 如果文件在读取时被制除或重命名, F ...

  2. Pycharm学生版安装教程(2019-12月更新)

    以下方法全部是官方渠道正版激活,可选择学生版(免费) 或企业版(付费) 我的机器学习教程「美团」算法工程师带你入门机器学习  以及 「三分钟系列」数据结构与算法  已经开始更新了,欢迎大家订阅~这篇专 ...

  3. 20191017-8 alpha week 2/2 Scrum立会报告+燃尽图 07

    此作业要求参见https://edu.cnblogs.com/campus/nenu/2019fall/homework/9804 小组名称:“组长”组 组长:杨天宇 组员:魏新,罗杨美慧,王歆瑶,徐 ...

  4. Ubuntu 18.04 64位安装tensorflow-gpu

    第一步(可直接跳到第二步):安装nvidia显卡驱动 linux用户可以通过官方ppa解决安装GPU驱动的问题.使用如下命令添加Graphic Drivers PPA: 1 sudo add-apt- ...

  5. 洛谷P4141 消失之物 题解 背包问题扩展

    题目链接:https://www.luogu.com.cn/problem/P4141 题目大意: 有 \(n\) 件物品,求第 \(i\) 件物品不能选的时候(\(i\) 从 \(1\) 到 \(n ...

  6. 2020了你还不会Java8新特性?(六)Stream源码剖析

    Stream流源码详解 节前小插曲 AutoCloseable接口: 通过一个例子 举例自动关闭流的实现. public interface BaseStream<T, S extends Ba ...

  7. 26.python操作Excel

    写入Excel import xlwt book=xlwt.Workbook(encoding='utf-8') sheet=book.add_sheet('xiangxin') # 标题名 titl ...

  8. Spring Cloud Stream消息驱动之RocketMQ入门(一)

    SpringCloudStream目前支持的中间件有RabbitMQ.Kafka,还有我最近在学习的RocketMQ,以下是我学习的笔记 学习Spring cloud Stream 可以先学习一下了解 ...

  9. 投票:OAuth2.0 技术选型你会怎么选

    1. 前言 在使用 OAuth2.0 中 Authorization Server (授权服务器)是一个回避不了的设施,在大多数情况下我们调用的是一些知名的.可靠的.可信任的第三方平台,比如 QQ.微 ...

  10. 流程控制-物流费用计算(嵌套if)

    题目描述 快递公司规定,如果物品体积超过2.5立方米,不允许快递.如果重量超过40kg,不允许快递.快递收费价格为: 小于等于1kg,一口价10块钱: 大于1kg,小于等于5kg,10块钱的基础上,每 ...