PP: Reconstructing time series into a complex network to assess the evolution dynamics of the correlations among energy prices
Purpose
detect the dynamics in time series of their correlation
Methodology
1. calculate correlation coefficients
2. Network construction:
i. node: AAB, ABC, etc. totally 5^3=125个nodes. 但是不是所有的mode情况都会出现,于是the number of nodes 是个随机数, 并且满足<125.
ii. edge: 如果出现了从mode1到mode2的转变则增加一条mode1---->mode2 的边.
iii. weight: mode1---->mode2的转变出现的次数.
3. clustering:
Results:
1. major modes: high outdegree nodes.
interpretation: The higher the weighted outdegree, the more important the node is.
2. evolution dynamics of correlation modes.
i. total 6 clusters and shows the evolution relations between clusters.
ii. the evolution of one cluster over time.
........More.......
Lacking: lack the interpretation of each clusters, just showed there are 6 clusters and the transfer probability between clusters.
Supplementary knowledge:
1. sensitivity analysis; 敏感度分析
sensitivity analysis is the study of how the uncertainty in the output of a mathematical model or system (numerical or otherwise) can be divided and allocated to different sources of uncertainty in its inputs.[1][2]
PP: Reconstructing time series into a complex network to assess the evolution dynamics of the correlations among energy prices的更多相关文章
- Weighted Visibility Graph With Complex Network Features in the Detection of Epilepsy
Their data five data set, 100 single channel of EEG signals, each channel EEG has 4097 data point. t ...
- 论文翻译:2021_论文翻译:2018_F-T-LSTM based Complex Network for Joint Acoustic Echo Cancellation and Speech Enhancement
论文地址:https://arxiv.53yu.com/abs/2106.07577 基于 F-T-LSTM 复杂网络的联合声学回声消除和语音增强 摘要 随着对音频通信和在线会议的需求日益增加,在包括 ...
- PP: Multi-Horizon Time Series Forecasting with Temporal Attention Learning
Problem: multi-horizon probabilistic forecasting tasks; Propose an end-to-end framework for multi-ho ...
- MATLAB时间序列预测Prediction of time series with NAR neural network
具体请参考:http://lab.fs.uni-lj.si/lasin/wp/IMIT_files/neural/nn05_narnet/ 神经网络预测时间序列数据,有三种模型, 这里是给出的是第二种 ...
- Complex social network Partition for Balanced Subnetworks---Hao Lan Zhang,Jiming Liu,Chunyu Feng,Chaoyi Pang,Tongliang Li,Jing He阅读
摘要:Abstract—Complex social network analysis methods have been applied extensively in various domains ...
- complex brain network
Organization, development and function of complex brain networks The Brain as a Complex System: Usin ...
- What is “Neural Network”
Modern neuroscientists often discuss the brain as a type of computer. Neural networks aim to do the ...
- Visibility Graph Analysis of Geophysical Time Series: Potentials and Possible Pitfalls
Tasks: invest papers 3 篇. 研究主动权在我手里. I have to. 1. the benefit of complex network: complex networ ...
- {ICIP2014}{收录论文列表}
This article come from HEREARS-L1: Learning Tuesday 10:30–12:30; Oral Session; Room: Leonard de Vinc ...
随机推荐
- mysql行转列,函数GROUP_CONCAT(expr)
demo: 语句: SELECT '行' id, '' product_nameUNIONSELECT id, product_name FROM `product` WHERE id < 5 ...
- Python2与Python3比较
1.print 函数 1. print语句没有了,取而代之的是print()函数. Python 2.6与Python 2.7部分地支持这种形式的print语法. 2.Unicode 1. 在pyt ...
- javaSE学习笔记(10)---List、Set
javaSE学习笔记(10)---List.Set 1.数据存储的数据结构 常见的数据结构 数据存储的常用结构有:栈.队列.数组.链表和红黑树. 1.栈 栈:stack,又称堆栈,它是运算受限的线性表 ...
- [[FJOI2016]神秘数][主席树]
明白之后 5min 就写好了-自闭- 这题的题意是问你 \([L,R]\) 区间的数字不能构成的数字的最小值- 首先考虑 如果 \([1,x]\) 可以被表示 那么加入一个 \(a_i\) 显然 \( ...
- JavaScript 自适应轮播图
代码 话不多说,先上代码,方便复制粘贴.演示 <!DOCTYPE html> <html lang="en"> <head> <meta ...
- CF571D Campus(19-1)
题意 \(n\)个点,维护两个森林,这里\(A,B\)两个森林对应的点都是一样的,相当于对两个森林操作都会影响这\(n\)个点 开始森林里的树都是一个点,\(A,B\)支持合并(但树结构互不影响),\ ...
- 数据结构与算法之比较排序【Java】
比较排序与非比较排序的对比 常见的快速排序.归并排序.堆排序.冒泡排序等属于比较排序.在排序的最终结果里,元素之间的次序依赖于它们之间的比较.每个数都必须和其他数进行比较,才能确定自己的位置.在冒泡排 ...
- Python函数装饰器
装饰器的原则 1)不修改被修饰函数的源代码: 2)不修改被修饰函数的调用方式: 装饰器的知识点 = 高阶函数 + 函数嵌套 + 闭包 1. 只用高阶函数写装饰器--->有瑕疵 import ti ...
- 数位dp(模板+例题)
文章参考:数位dp之总结 首先,什么是数位dp?它是干什么的? 数位dp是一种计数用的dp,一般就是要统计一个区间[le,ri]内满足一些条件数的个数. 举个栗子: 加入我们要枚举所有上界不超过231 ...
- asp.net core 自定义基于 HttpContext 的 Serilog Enricher
asp.net core 自定义基于 HttpContext 的 Serilog Enricher Intro 通过 HttpContext 我们可以拿到很多有用的信息,比如 Path/QuerySt ...